Publications listed below were provided to GRDC by the authors after completing their studies, or have been identified by the GRDC through searching the Internet. References are sorted alphabetically by first authors last name. As far as available, the original source is documented, or an URL is provided that will guide you to the source from where the GRDC retrieved an abstract or the relevant document. These hyperlinks are provided as a convenience only. They imply neither responsibility for, nor approval of the information contained.
Select year
Andreia dos Santos, J., C. Barbosa Silva, H. Soares de Santana, C. Cano-Barbacil, A. A. Agostinho, F. T. Normando, et al., 2022. Assessing the short-term response of fish assemblages to damming of an Amazonian river, Journal of Environmental Management, 307, 114571, https://doi.org/10.1016/j.jenvman.2022.114571
Antico, A., and M. Vuille, 2022. ENSO and Paraná flow variability: Long-term changes in their connectivity, International Journal of Climatology, 42, 7269-7279, https://doi.org/10.1002/joc.7643
Auricht, H., L. Mosley, M. Lewis, and K. Clarke, 2022. Mapping the long-term influence of river discharge on coastal ocean chlorophyll-a, Remote Sensing in Ecology and Conservation, 8, 629-643, https://doi.org/10.1002/rse2.266
Ayers, J. R., G. Villarini, Y. Tramblay, and H. Kim, 2022. Observed changes in monthly baseflow across Africa, Hydrological Sciences Journal, 1-11, https://doi.org/10.1080/02626667.2022.2144320
Bendoni, M., M. Fattorini, S. Taddei, and C. Brandini, 2022. High-resolution downscaling of CMEMS oceanographic reanalysis in the area of the Tuscany Archipelago (Italy), Ocean Dynamics, 72, 295-312, https://doi.org/10.1007/s10236-022-01501-3
Boeing, F., O. Rakovec, R. Kumar, L. Samaniego, M. Schrön, A. Hildebrandt, et al., 2022. High-resolution drought simulations and comparison to soil moisture observations in Germany, Hydrology and Earth System Sciences, 26, 5137-5161, https://doi.org/10.5194/hess-26-5137-2022
Bola, G. B., R. M. Tshimanga, J. Neal, M. A. Trigg, L. Hawker, V. M. Lukanda, and P. Bates, 2022. Understanding flood seasonality and flood regime shift in the Congo River Basin, Hydrological Sciences Journal, 67, 1496-1515, https://doi.org/10.1080/02626667.2022.2083966
Brazda, S., M. Šraj, and N. Bezak, 2022. Classification of Floods in Europe and North America with Focus on Compound Events, International Journal of Geo-Information, 11, 580, https://doi.org/10.3390/ijgi11120580
Breiner, F. T., M. Anand, S. H. M. Butchart, M. Flörke, E. Fluet-Chouinard, A. Guisan, et al., 2022. Setting priorities for climate change adaptation of Critical Sites in the Africa-Eurasian waterbird flyways, Primary Research Article, 28, 739-752, https://doi.org/10.1111/gcb.15961
Brönnimann, S., P. Stucki, J. Franke, V. Valler, Y. Brugnara, R. Hand, et al., 2022. Influence of warming and atmospheric circulation changes on multidecadal European flood variability, Climate of the Past, 18, 919-933, https://doi.org/10.5194/cp-18-919-2022
Brunner, M. I., and S. Fischer, 2022. Snow-influenced floods are more strongly connected in space than purely rainfall-driven floods, Environmental Research Letters, 17, 104038, https://doi.org/10.1088/1748-9326/ac948f
Brunner, M. I., A. F. Van Loon, and K. Stahl, 2022. Moderate and Severe Hydrological Droughts in Europe Differ in Their Hydrometeorological Drivers, Water Resources Research, 58, e2022WR032871, https://doi.org/10.1029/2022WR032871
Camici, S., G. Giuliani, L. Brocca, C. Massari, A. Tarpanelli, H. H. Farahani, et al., 2022. Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation, Geoscientific Model Development, 15, 6935-6956, https://doi.org/10.5194/gmd-15-6935-2022
Campuzano, F., F. Santos, L. Simionesei, A. R. Oliveira, E. Olmedo, A. Turiel, et al., 2022. Framework for Improving Land Boundary Conditions in Ocean Regional Products, Journal of Marine Science and Engineering, 10, 852, https://doi.org/10.3390/jmse10070852
Chelu, A., L. Zaharia, and V. Dubreuil, 2022. Estimation of climatic and anthropogenic contributions to streamflow change in southern Romania, Hydrological Sciences Journal, 67, 1598-1608, https://doi.org/10.1080/02626667.2022.2098025
Chen, F., Y. Chen, N. Davi, and H. Zhang, 2022. Summer Temperature Reconstruction for the Source Area of the Northern Asian Great River Basins, Northern Mongolian Plateau Since 1190 CE and its Linkage With Inner Asian Historical Societal Changes, Frontiers in Earth Science, 10, https://doi.org/10.3389/feart.2022.904851
Chowdhury, K. M. A., W. Jiang, C. Bian, G. Liu, M. K. Ahmed, and S. Akhter, 2022. Contributions of shortwave radiation to the formation of temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean: A modeling approach, Acta Oceanologica Sinica, 41, 19-37, https://doi.org/10.1007/s13131-022-1998-0
Colombera, L., and N. P. Mountney, 2022. Scale dependency in quantifications of the avulsion frequency of coastal rivers, Earth-Science Reviews, 230, 104043, https://doi.org/10.1016/j.earscirev.2022.104043
Dai, C., X. Qin, F. Dong, and Y. Cai, 2022. Climate change impact on blue and green water resources distributions in the Beijiang River basin based on CORDEX projections, Journal of Water and Climate Change, 13, 2780-2798, https://doi.org/10.2166/wcc.2022.115
Droppers, B., I. Supit, R. Leemans, M. T. H. van Vliet, and F. Ludwig, 2022. Limits to management adaptation for the Indus’ irrigated agriculture, Agricultural and Forest Meteorology, 321, 108971, https://doi.org/10.1016/j.agrformet.2022.108971
Ebeling, P., R. Kumar, S. R. Lutz, T. Nguyen, F. Sarrazin, M. Weber, et al., 2022. QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany, Earth System Science Data, 14, 3715-3741, https://doi.org/10.5194/essd-14-3715-2022
Ekolu, J., B. Dieppois, M. Sidibe, J. M. Eden, Y. Tramblay, G. Villarini, et al., 2022. Long-term variability in hydrological droughts and floods in sub-Saharan Africa: New perspectives from a 65-year daily streamflow dataset, Journal of Hydrology, 613, 128359, https://doi.org/10.1016/j.jhydrol.2022.128359
Elmi, O., and M. J. Tourian, 2022. Retrieving time series of river water extent from global inland water data sets, Journal of Hydrology, 128880, https://doi.org/10.1016/j.jhydrol.2022.128880
Fang, G., J. Yang, Z. Li, Y. Chen, W. Duan, C. Amory, and P. De Maeyer, 2022. Shifting in the global flood timing, Scientific Reports, 12, 18853, https://doi.org/10.1038/s41598-022-23748-y
Feijó, A., D. Ge, Z. Wen, L. Xia, and Q. Yang, 2022. Identifying hotspots and priority areas for xenarthran research and conservation, Diversity and Distributions, 28, 2778-2790, https://doi.org/10.1111/ddi.13473
Fernando, N. S., S. Shrestha, S. Kc, and S. Mohanasundaram, 2022. Investigating major causes of extreme floods using global datasets: A case of Nepal, USA & Thailand, Progress in Disaster Science, 13, 100212, https://doi.org/10.1016/j.pdisas.2021.100212
Formetta, G., G. Tootle, and M. Therrell, 2022. Regional Reconstruction of Po River Basin (Italy) Streamflow, Hydrology, 9, 163, https://doi.org/10.3390/hydrology9100163
Forte, A. M., J. S. Leonard, M. W. Rossi, K. X. Whipple, A. M. Heimsath, L. Sukhishvili, et al., 2022. Low variability runoff inhibits coupling of climate, tectonics, and topography in the Greater Caucasus, Earth and Planetary Science Letters, 584, 117525, https://doi.org/10.1016/j.epsl.2022.117525
Fuentes, I., J. Padarian, and R. W. Vervoort, 2022. Spatial and Temporal Global Patterns of Drought Propagation, Frontiers in Environmental Science, 10, https://doi.org/10.3389/fenvs.2022.788248
Ganguli, P., A. Majhi, and R. Kumar, 2022. Observational Evidence for Multivariate Drought Hazard Amplifications Across Disparate Climate Regimes, Earth’s Future, 10, e2022EF002809, https://doi.org/10.1029/2022EF002809
García-Valdecasas Ojeda, M., F. Di Sante, E. Coppola, A. Fantini, R. Nogherotto, F. Raffaele, and F. Giorgi, 2022. Climate change impact on flood hazard over Italy, Journal of Hydrology, 615, 128628, https://doi.org/10.1016/j.jhydrol.2022.128628
Gardel, A., E. J. Anthony, V. F. Santos, N. Huybrechts, S. Lesourd, A. Sottolichio, and T. Maury, 2022. A remote sensing-based classification approach for river mouths of the Amazon-influenced Guianas coast, Regional Environmental Change, 22, 65, https://doi.org/10.1007/s10113-022-01913-3
Gebrechorkos, S. H., M. Pan, P. Lin, D. Anghileri, N. Forsythe, D. M. W. Pritchard, et al., 2022. Variability and changes in hydrological drought in the Volta Basin, West Africa, Journal of Hydrology: Regional Studies, 42, 101143, https://doi.org/10.1016/j.ejrh.2022.101143
Gommet, C., R. Lauerwald, P. Ciais, B. Guenet, H. Zhang, and P. Regnier, 2022. Spatiotemporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching into the European river network, Earth System Dynamics, 13, 393-418, https://doi.org/10.5194/esd-13-393-2022
Gosal, A. S., P. M. Evans, J. M. Bullock, J. Redhead, M. B. Charlton, A. F. Cord, et al., 2022. Understanding the accuracy of modelled changes in freshwater provision over time, Science of The Total Environment, 833, 155042, https://doi.org/10.1016/j.scitotenv.2022.155042
Greuell, W., and R. W. A. Hutjes, 2022. Skill and sources of skill in seasonal streamflow hindcasts for South America made with ECMWF’s SEAS5 and VIC, Journal of Hydrology, 128806, https://doi.org/10.1016/j.jhydrol.2022.128806
Grogan, D. S., S. Zuidema, A. Prusevich, W. M. Wollheim, S. Glidden, and R. B. Lammers, 2022. Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality, Geoscientific Model Development, 15, 7287-7323, https://doi.org/10.5194/gmd-15-7287-2022
Gu, L., J. Chen, J. Yin, L. J. Slater, H.-M. Wang, Q. Guo, et al., 2022. Global Increases in Compound Flood-Hot Extreme Hazards Under Climate Warming, Geophysical Research Letters, 49, e2022GL097726, https://doi.org/10.1029/2022GL097726
Hagemann, S., and T. Stacke, 2022. Complementing ERA5 and E-OBS with high-resolution river discharge over Europe, Oceanologia, https://doi.org/10.1016/j.oceano.2022.07.003
Han, L., and L. Menzel, 2022. Hydrological variability in southern Siberia and the role of permafrost degradation, Journal of Hydrology, 604, 127203, https://doi.org/10.1016/j.jhydrol.2021.127203
Hanazaki, R., D. Yamazaki, and K. Yoshimura, 2022. Development of a Reservoir Flood Control Scheme for Global Flood Models, Journal of Advances in Modeling Earth Systems, 14, e2021MS002944, https://doi.org/10.1029/2021MS002944
He, Y., D. Manful, R. Warren, N. Forstenhäusler, T. J. Osborn, J. Price, et al., 2022. Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries, Climatic Change, 170, 15, https://doi.org/10.1007/s10584-021-03289-5
Hellwig, J., Y. Liu, K. Stahl, and A. Hartmann, 2022. Drought propagation in space and time: the role of groundwater flows, Environmental Research Letters, 17, 094008, https://doi.org/10.1088/1748-9326/ac8693
Hoek van Dijke, A. J., M. Herold, K. Mallick, I. Benedict, M. Machwitz, M. Schlerf, et al., 2022. Shifts in regional water availability due to global tree restoration, Nature Geoscience, 15, 363-368, https://doi.org/10.1038/s41561-022-00935-0
Hou, M., L. Cuo, A. Murodov, J. Ding, Y. Luo, T. Liu, and X. Chen, 2022. Streamflow Composition and the Contradicting Impacts of Anthropogenic Activities and Climatic Change on Streamflow in the Amu Darya Basin, Central Asia, Journal of Hydrometeorology, https://doi.org/10.1175/jhm-d-22-0040.1
Hu, S., and X. Mo, 2022. Diversified evapotranspiration responses to climatic change and vegetation greening in eight global great river basins, Journal of Hydrology, 613, 128411, https://doi.org/10.1016/j.jhydrol.2022.128411
Huo, Y., W. R. Peltier, and D. Chandan, 2022. Mid-Holocene climate of the Tibetan Plateau and hydroclimate in three major river basins based on high-resolution regional climate simulations, Climate of the Past, 18, 2401-2420, https://doi.org/10.5194/cp-18-2401-2022
Hut, R., N. Drost, N. van de Giesen, B. van Werkhoven, B. Abdollahi, J. Aerts, et al., 2022. The eWaterCycle platform for open and FAIR hydrological collaboration, Geoscientific Model Development, 15, 5371-5390, https://doi.org/10.5194/gmd-15-5371-2022
Ioana-Toroimac, G., L. Zaharia, G.-A. Moroșanu, F. Grecu, and K. Hachemi, 2022. Assessment of Restoration Effects in Riparian Wetlands using Satellite Imagery. Case Study on the Lower Danube River, Wetlands, 42, 30, https://doi.org/10.1007/s13157-022-01543-9
Jackson, S., E. P. Anderson, N. C. Piland, S. Carriere, L. Java, and T. D. Jardine, 2022. River rhythmicity: A conceptual means of understanding and leveraging the relational values of rivers, People and Nature, 4, 949-962, https://doi.org/10.1002/pan3.10335
Jaramillo, F., L. Piemontese, W. R. Berghuijs, L. Wang-Erlandsson, P. Greve, and Z. Wang, 2022. Fewer Basins Will Follow Their Budyko Curves Under Global Warming and Fossil-Fueled Development, Water Resources Research, 58, e2021WR031825, https://doi.org/10.1029/2021WR031825
Jiang, S., E. Bevacqua, and J. Zscheischler, 2022. River flooding mechanisms and their changes in Europe revealed by explainable machine learning, Hydrology and Earth System Sciences, 26, 6339-6359, https://doi.org/10.5194/hess-26-6339-2022
Kabuya, P. M., D. A. Hughes, R. M. Tshimanga, M. A. Trigg, and P. Bates, 2022. Assessing the potential value of the regionalised input constraint indices for constraining hydrological model simulations in the Congo River Basin, Advances in Water Resources, 159, 104093, https://doi.org/10.1016/j.advwatres.2021.104093
Kalu, I., C. E. Ndehedehe, O. Okwuashi, A. E. Eyoh, and V. G. Ferreira, 2022. An assimilated deep learning approach to identify the influence of global climate on hydrological fluxes, Journal of Hydrology, 614, 128498, https://doi.org/10.1016/j.jhydrol.2022.128498
Khan, Z., F. A. Khan, A. U. Khan, I. Hussain, A. Khan, L. A. Shah, et al., 2022. Climate-Streamflow Relationship and Consequences of Its Instability in Large Rivers of Pakistan: An Elasticity Perspective, Water, 14, 2033, https://doi.org/10.3390/w14132033
Kitambo, B., F. Papa, A. Paris, R. M. Tshimanga, S. Calmant, A. S. Fleischmann, et al., 2022. A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin, Hydrology and Earth System Sciences, 26, 1857-1882, https://doi.org/10.5194/hess-26-1857-2022
Kumar, A., S. N. Gosling, M. F. Johnson, M. D. Jones, J. Zaherpour, R. Kumar, et al., 2022. Multi-model evaluation of catchment- and global-scale hydrological model simulations of drought characteristics across eight large river catchments, Advances in Water Resources, 165, 104212, https://doi.org/10.1016/j.advwatres.2022.104212
Lehmann, F., B. D. Vishwakarma, and J. Bamber, 2022. How well are we able to close the water budget at the global scale?, Hydrology and Earth System Sciences, 26, 35-54, https://doi.org/10.5194/hess-26-35-2022
Lehner, B., M. L. Messager, M. C. Korver, and S. Linke, 2022. Global hydro-environmental lake characteristics at high spatial resolution, Scientific Data, 9, 351, https://doi.org/10.1038/s41597-022-01425-z
Liersch, S., H. Koch, J. A. Abungba, S. Salack, and F. Hattermann, 2022. Attributing synergies and trade-offs in water resources planning and management in the Volta River basin under climate change, Environmental Research Letters, https://doi.org/10.1088/1748-9326/acad14
Liu, D., and D. Fu, 2022. The water yield pattern for annual and monthly scales from a unifying catchment water balance model, Stochastic Environmental Research and Risk Assessment, 36, 4057-4072, https://doi.org/10.1007/s00477-022-02244-9
Liu, H., X. Xin, Z. Su, Y. Zeng, T. Lian, L. Li, et al., 2022a. Intercomparison and evaluation of ten global ET products at site and basin scales, Journal of Hydrology, 128887, https://doi.org/10.1016/j.jhydrol.2022.128887
Liu, J., S. Feng, X. Gu, Y. Zhang, H. E. Beck, J. Zhang, and S. Yan, 2022b. Global changes in floods and their drivers, Journal of Hydrology, 614, 128553, https://doi.org/10.1016/j.jhydrol.2022.128553
Liu, Q., Y. Yang, L. Liang, D. Yan, X. Wang, C. Li, and T. Sun, 2022c. Hydrological effects of the snow fraction and its ecohydrological explication within the Budyko framework, Journal of Hydrology, 610, 127813, https://doi.org/10.1016/j.jhydrol.2022.127813
Liu, T., P. Shi, and J. Fang, 2022d. Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019), Natural Hazards, 111, 2601-2625, https://doi.org/10.1007/s11069-021-05150-5
Liu, X., K. Yang, V. G. Ferreira, and P. Bai, 2022e. Hydrologic Model Calibration With Remote Sensing Data Products in Global Large Basins, Water Resources Research, 58, e2022WR032929, https://doi.org/10.1029/2022WR032929
Massari, C., F. Avanzi, G. Bruno, S. Gabellani, D. Penna, and S. Camici, 2022. Evaporation enhancement drives the European water-budget deficit during multi-year droughts, Hydrology and Earth System Sciences, 26, 1527-1543, https://doi.org/10.5194/hess-26-1527-2022
Mohan Kumar, S., V. Geethalakshmi, S. Ramanathan, A. Senthil, K. Senthilraja, K. Bhuvaneswari, et al., 2022. Rainfall Spatial-Temporal Variability and Trends in the Thamirabharani River Basin, India: Implications for Agricultural Planning and Water Management, Sustainability, 14, 14948, https://doi.org/10.3390/su142214948
Mourthé, Í., R. R. Hilário, W. D. Carvalho, and J. P. Boubli, 2022. Filtering Effect of Large Rivers on Primate Distribution in the Brazilian Amazonia, Frontiers in Ecology and Evolution, 10, https://doi.org/10.3389/fevo.2022.857920
Murodov, A., L. Cuo, N. Li, D. Murodov, M. Hou, and G. Hussain, 2022. Extreme Hydro-meteorological conditions and changes in the Amu Darya River Basin in Central Asia, Journal of Hydrometeorology, https://doi.org/10.1175/jhm-d-22-0025.1
Naegeli, K., J. Franke, C. Neuhaus, N. Rietze, M. Stengel, X. Wu, and S. Wunderle, 2022. Revealing four decades of snow cover dynamics in the Hindu Kush Himalaya, Scientific Reports, 12, 13443, https://doi.org/10.1038/s41598-022-17575-4
Nasreen, S., M. Součková, M. R. Vargas Godoy, U. Singh, Y. Markonis, R. Kumar, et al., 2022. A 500-year annual runoff reconstruction for 14 selected European catchments, Earth System Science Data, 14, 4035-4056, https://doi.org/10.5194/essd-14-4035-2022
Nielsen, K., E. Zakharova, A. Tarpanelli, O. B. Andersen, and J. Benveniste, 2022. River levels from multi mission altimetry, a statistical approach, Remote Sensing of Environment, 270, 112876, https://doi.org/10.1016/j.rse.2021.112876
Nkwasa, A., C. J. Chawanda, and A. van Griensven, 2022. Regionalization of the SWAT+ model for projecting climate change impacts on sediment yield: An application in the Nile basin, Journal of Hydrology: Regional Studies, 42, 101152, https://doi.org/10.1016/j.ejrh.2022.101152
Normandin, C., P. Paillou, S. Lopez, E. Marais, and K. Scipal, 2022. Monitoring the Dynamics of Ephemeral Rivers from Space: An Example of the Kuiseb River in Namibia, Water, 14, 3142, https://doi.org/10.3390/w14193142
O’Connell, E., G. O’Donnell, and D. Koutsoyiannis, 2022. The Spatial Scale Dependence of The Hurst Coefficient in Global Annual Precipitation Data, and Its Role in Characterising Regional Precipitation Deficits within a Naturally Changing Climate, Hydrology, 9, 199, https://doi.org/10.3390/hydrology9110199
Obahoundje, S., and A. Diedhiou, 2022. Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: a review, Environmental Research Letters, 17, 043005, https://doi.org/10.1088/1748-9326/ac5b3b
Ogbu, K. N., O. Rakovec, P. K. Shrestha, L. Samaniego, B. Tischbein, and H. Meresa, 2022. Testing the mHM-MPR Reliability for Parameter Transferability across Locations in North-Central Nigeria, Hydrology, 9, 158, https://doi.org/10.3390/hydrology9090158
Olcese, G., P. D. Bates, J. C. Neal, C. C. Sampson, O. E. J. Wing, N. Quinn, and H. E. Beck, 2022. Use of Hydrological Models in Global Stochastic Flood Modeling, Water Resources Research, 58, e2022WR032743, https://doi.org/10.1029/2022WR032743
Oussou, F. E., C. E. Ndehedehe, J. Oloukoi, N. Yalo, M. Boukari, and A. T. Diaw, 2022. Characterization of the hydro-geological regime of fractured aquifers in Benin (West-Africa) using multi-satellites and models, Journal of Hydrology: Regional Studies, 39, 100987, https://doi.org/10.1016/j.ejrh.2021.100987
Pang, J., and H. Zhang, 2022. Global map of a comprehensive drought/flood index and analysis of controlling environmental factors, Natural Hazards, https://doi.org/10.1007/s11069-022-05673-5
Peña-Angulo, D., S. M. Vicente-Serrano, F. Domínguez-Castro, J. Lorenzo-Lacruz, C. Murphy, J. Hannaford, et al., 2022. The Complex and Spatially Diverse Patterns of Hydrological Droughts Across Europe, Water Resources Research, 58, e2022WR031976, https://doi.org/10.1029/2022WR031976
Persiano, S., A. Pugliese, A. Aloe, J. O. Skøien, A. Castellarin, and A. Pistocchi, 2022. Streamflow data availability in Europe: a detailed dataset of interpolated flow-duration curves, Earth System Science Data, 14, 4435-4443, https://doi.org/10.5194/essd-14-4435-2022
Prasojo, O. A., T. B. Hoey, A. Owen, and R. D. Williams, 2022. Slope break and avulsion locations scale consistently in global deltas, Geophysical Research Letters, 49, e2021GL093656, https://doi.org/10.1029/2021GL093656
Probst, E., and W. Mauser, 2022. Evaluation of ERA5 and WFDE5 forcing data for hydrological modelling and the impact of bias correction with regional climatologies: A case study in the Danube River Basin, Journal of Hydrology: Regional Studies, 40, 101023, https://doi.org/10.1016/j.ejrh.2022.101023
Qi, W.-y., J. Chen, L. Li, C.-Y. Xu, J. Li, Y. Xiang, and S. Zhang, 2022. Regionalization of catchment hydrological model parameters for global water resources simulations, Hydrology Research, 53, 441-466, https://doi.org/10.2166/nh.2022.118
Rivas-López, M. R., S. Liersch, C. Menz, S. Lange, and F. F. Hattermann, 2022. Potential hydro-meteorological impacts over Burundi from climate change, Journal of Hydrology: Regional Studies, 42, 101130, https://doi.org/10.1016/j.ejrh.2022.101130
Salas, H. D., J. Valencia, A. Builes-Jaramillo, and A. Jaramillo, 2022. Synoptic Time Scale Variability in Precipitation and Streamflows for River Basins over Northern South America, Hydrology, 9, 59, https://doi.org/10.3390/hydrology9040059
Sarrazin, F. J., R. Kumar, N. B. Basu, A. Musolff, M. Weber, K. J. Van Meter, and S. Attinger, 2022. Characterizing Catchment-Scale Nitrogen Legacies and Constraining Their Uncertainties, Water Resources Research, 58, e2021WR031587, https://doi.org/10.1029/2021WR031587
Sekhon, N., C. P. C. David, M. C. M. Geronia, M. J. G. Custado, and D. E. Ibarra, 2022. Investigating the response of hydrological processes to El Niño events using a 100-year dataset from the western Pacific Ocean, Journal of Hydrology: Regional Studies, 42, 101174, https://doi.org/10.1016/j.ejrh.2022.101174
Shao, X., Y. Zhang, C. Liu, F. H. S. Chiew, J. Tian, N. Ma, and X. Zhang, 2022. Can Indirect Evaluation Methods and Their Fusion Products Reduce Uncertainty in Actual Evapotranspiration Estimates?, Water Resources Research, 58, e2021WR031069, https://doi.org/10.1029/2021WR031069
Shen, Y., J. Ruijsch, M. Lu, E. H. Sutanudjaja, and D. Karssenberg, 2022. Random forests-based error-correction of streamflow from a large-scale hydrological model: Using model state variables to estimate error terms, Computers & Geosciences, 159, 105019, https://doi.org/10.1016/j.cageo.2021.105019
Somisetty, A., A. Pachore, R. Remesan, and R. Kumar, 2022. Multi-Model Assessment of Streamflow Simulations under Climate and Anthropogenic Changes Exemplified in Two Indian River Basins, Water, 14, 194, https://doi.org/10.3390/w14020194
Steirou, E., L. Gerlitz, X. Sun, H. Apel, A. Agarwal, S. Totz, and B. Merz, 2022. Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information, Scientific Reports, 12, 13514, https://doi.org/10.1038/s41598-022-16633-1
Sun, S., L. Zhu, K. Hu, Y. Li, and Y. Nie, 2022. Quantitatively distinguishing the factors driving sediment flux variations in the Daling River Basin, North China, CATENA, 212, 106094, https://doi.org/10.1016/j.catena.2022.106094
Szczepanek, R., 2022. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost, Hydrology, 9, 226, https://doi.org/10.3390/hydrology9120226
Tan, X., B. Liu, X. Tan, and X. Chen, 2022. Long-Term Water Imbalances of Watersheds Resulting From Biases in Hydroclimatic Data Sets for Water Budget Analyses, Water Resources Research, 58, e2021WR031209, https://doi.org/10.1029/2021WR031209
Tarpanelli, A., A. C. Mondini, and S. Camici, 2022. Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe, Natural Hazards and Earth System Sciences, 22, 2473-2489, https://doi.org/10.5194/nhess-22-2473-2022
Thornton, J. M., N. Pepin, M. Shahgedanova, and C. Adler, 2022. Coverage of In Situ Climatological Observations in the World’s Mountains, Frontiers in Climate, 4, https://doi.org/10.3389/fclim.2022.814181
Tourian, M. J., O. Elmi, Y. Shafaghi, S. Behnia, P. Saemian, R. Schlesinger, and N. Sneeuw, 2022. HydroSat: geometric quantities of the global water cycle from geodetic satellites, Earth System Science Data, 14, 2463-2486, https://doi.org/10.5194/essd-14-2463-2022
Tuel, A., B. Schaefli, J. Zscheischler, and O. Martius, 2022. On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe, Hydrology and Earth System Sciences, 26, 2649-2669, https://doi.org/10.5194/hess-26-2649-2022
Ultee, L., S. Coats, and J. Mackay, 2022. Glacial runoff buffers droughts through the 21st century, Earth System Dynamics, 13, 935-959, https://doi.org/10.5194/esd-13-935-2022
van Ginkel, K. C. H., E. E. Koks, F. de Groen, V. D. Nguyen, and L. Alfieri, 2022. Will river floods ‘tip’ European road networks? A robustness assessment, Transportation Research Part D: Transport and Environment, 108, 103332, https://doi.org/10.1016/j.trd.2022.103332
Varona, H. L., F. Hernandez, A. Bertrand, and M. Araujo, 2022. Monthly anomaly database of atmospheric and oceanic parameters in the tropical Atlantic ocean, Data in Brief, 41, 107969, https://doi.org/10.1016/j.dib.2022.107969
Wang, A., Y. Miao, X. Kong, and H. Wu, 2022a. Future Changes in Global Runoff and Runoff Coefficient From CMIP6 Multi-Model Simulation Under SSP1-2.6 and SSP5-8.5 Scenarios, Earth’s Future, 10, e2022EF002910, https://doi.org/10.1029/2022EF002910
Wang, F., G. H. Huang, Y. P. Li, and G. H. Cheng, 2022b. Development of a Stepwise-Clustered Multi-Catchment Hydrological Model for Quantifying Interactions in Regional Climate-Runoff Relationships, Water Resources Research, 58, e2021WR030035, https://doi.org/10.1029/2021WR030035
Wang, H., K. Han, S. Bao, W. Chen, and K. Ren, 2022c. Comparative Analysis between Sea Surface Salinity Derived from SMOS Satellite Retrievals and in Situ Measurements, Remote Sensing, 14, 5465, https://doi.org/10.3390/rs14215465
Wang, N., F. Sun, H. Wang, and W. Liu, 2022d. Effects of cryospheric hydrological processes on future flood inundation and the subsequent socioeconomic exposures in Central Asia, Environmental Research Letters, 17, 124020, https://doi.org/10.1088/1748-9326/aca491
Wang, Y., D. Liu, E. Liang, and J. Ni, 2022e. Structural Characteristics of Endorheic Rivers in the Tarim Basin, Earth’s Future, 14, 4502, https://doi.org/10.1029/2022EF002910
Wei, M., H. Zhou, Z. Luo, and M. Dai, 2022. Tracking inter-annual terrestrial water storage variations over Lake Baikal basin from GRACE and GRACE Follow-On missions, Journal of Hydrology: Regional Studies, 40, 101004, https://doi.org/10.1016/j.ejrh.2022.101004
Winkelbauer, S., M. Mayer, V. Seitner, E. Zsoter, H. Zuo, and L. Haimberger, 2022. Diagnostic evaluation of river discharge into the Arctic Ocean and its impact on oceanic volume transports, Hydrology and Earth System Sciences, 26, 279-304, https://doi.org/10.5194/hess-26-279-2022
Wu, G., J. Chen, X. Shi, J.-S. Kim, J. Xia, and L. Zhang, 2022. Impacts of Global Climate Warming on Meteorological and Hydrological Droughts and Their Propagations, Earth’s Future, 10, e2021EF002542, https://doi.org/10.1029/2021EF002542
Xiong, J., J. Yin, S. Guo, S. He, J. Chen, and Abhishek, 2022. Annual runoff coefficient variation in a changing environment: a global perspective, Environmental Research Letters, 17, 064006, https://doi.org/10.1088/1748-9326/ac62ad
Xue, Y., P. R. Houser, V. Maggioni, Y. Mei, S. V. Kumar, and Y. Yoon, 2022. Evaluation of High Mountain Asia-Land Data Assimilation System (Version 1) From 2003 to 2016: 2. The Impact of Assimilating Satellite-Based Snow Cover and Freeze/Thaw Observations Into a Land Surface Model, JGR Atmospheres, 127, e2021JD035992, https://doi.org/10.1029/2021JD035992
Yoshida, T., N. Hanasaki, K. Nishina, J. Boulange, M. Okada, and P. A. Troch, 2022. Inference of Parameters for a Global Hydrological Model: Identifiability and Predictive Uncertainties of Climate-Based Parameters, Water Resources Research, 58, e2021WR030660, https://doi.org/10.1029/2021WR030660
Yu, L., G. Y. Qiu, C. Yan, W. Zhao, Z. Zou, J. Ding, et al., 2022. A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement, Earth System Science Data, 14, 3673-3693, https://doi.org/10.5194/essd-14-3673-2022
Zhang, H., R. Lauerwald, P. Regnier, P. Ciais, K. Van Oost, V. Naipal, et al., 2022a. Estimating the lateral transfer of organic carbon through the European river network using a land surface model, Earth System Dynamics, 13, 1119-1144, https://doi.org/10.5194/esd-13-1119-2022
Zhang, S., L. Zhou, L. Zhang, Y. Yang, Z. Wei, S. Zhou, et al., 2022b. Reconciling disagreement on global river flood changes in a warming climate, Nature Climate Change, 12, 1160-1167, https://doi.org/10.1038/s41558-022-01539-7
Zhang, Y., A. Viglione, and G. Blöschl, 2022c. Temporal Scaling of Streamflow Elasticity to Precipitation: A Global Analysis, Water Resources Research, 58, e2021WR030601, https://doi.org/10.1029/2021WR030601
Zhao, M., G. A, Y. Liu, and A. G. Konings, 2022. Evapotranspiration frequently increases during droughts, Nature Climate Change, 12, 1024-1030, https://doi.org/10.1038/s41558-022-01505-3
Zhou, X., M. Revel, P. Modi, T. Shiozawa, and D. Yamazaki, 2022. Correction of River Bathymetry Parameters Using the Stage–Discharge Rating Curve, Water Resources Research, 58, e2021WR031226, https://doi.org/10.1029/2021WR031226
Zhu, W., S. Tian, J. Wei, S. Jia, and Z. Song, 2022. Multi-scale evaluation of global evapotranspiration products derived from remote sensing images: Accuracy and uncertainty, Journal of Hydrology, 611, 127982, https://doi.org/10.1016/j.jhydrol.2022.127982
Zsoter, E., G. Arduini, C. Prudhomme, E. Stephens, and H. Cloke, 2022. Hydrological Impact of the New ECMWF Multi-Layer Snow Scheme, Atmosphere, 13, 727, https://doi.org/10.3390/atmos13050727