Publications listed below were provided to GRDC by the authors after completing their studies, or have been identified by the GRDC through searching the Internet. References are sorted alphabetically by first authors last name. As far as available, the original source is documented, or an URL is provided that will guide you to the source from where the GRDC retrieved an abstract or the relevant document. These hyperlinks are provided as a convenience only. They imply neither responsibility for, nor approval of the information contained.
Select year
Abolafia-Rosenzweig, R., 2020. Including human activity in estimates of the terrestrial water cycle using models and remote sensing, University of Colorado, PhD thesis.
Aerts, J. P. M., S. Uhlemann-Elmer, D. Eilander, and P. J. Ward, 2020. Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study, Natural Hazards and Earth System Sciences, 20, 3245-3260, https://doi.org/10.5194/nhess-20-3245-2020
Alfieri, L., F. Dottori, P. Salamon, H. Wu, and L. Feyen, 2020a. Global modeling of seasonal mortality rates from river floods, Earth’s Future, 8, e2020EF001541, https://doi.org/10.1029/2020EF001541
Alfieri, L., V. Lorini, F. A. Hirpa, S. Harrigan, E. Zsoter, C. Prudhomme, and P. Salamon, 2020b. A global streamflow reanalysis for 1980–2018, Journal of Hydrology X, 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049
Ayzel, G., L. Kurochkina, and S. Zhuravlev, 2020. The influence of regional hydrometric data incorporation on the accuracy of gridded reconstruction of monthly runoff, Hydrological Sciences Journal, 1-12, https://doi.org/10.1080/02626667.2020.1762886
Baugh, C., P. de Rosnay, H. Lawrence, T. Jurlina, M. Drusch, E. Zsoter, and C. Prudhomme, 2020. The impact of SMOS soil moisture data assimilation within the Operational Global Flood Awareness System (GloFAS), 12, 1490, https://doi.org/10.3390/rs12091490
Beck, H. E., M. Pan, P. Lin, J. Seibert, A. I. J. M. van Dijk, and E. F. Wood, 2020a. Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments, JGR Atmospheres, 125, e2019JD031485, https://doi.org/10.1029/2019JD031485
Beck, H. E., E. F. Wood, T. R. McVicar, M. Zambrano-Bigiarini, C. Alvarez-Garreton, O. M. Baez-Villanueva, et al., 2020b. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments Journal of Climate, 33, 1299-1315, https://doi.org/10.1175/jcli-d-19-0332.1
Benedict, I. B., 2020. Atmospheric moisture transport and river runoff in the mid-latitudes, Wageningen University and Research, PhD thesis.
Bisset, R. R., A. Dehecq, D. N. Goldberg, M. Huss, R. G. Bingham, and N. Gourmelen, 2020. Reversed surface-mass-balance gradients on Himalayan debris-covered glaciers inferred from remote sensing, 12, 1563, https://www.mdpi.com/2072-4292/12/10/1563
Blatchford, M. L., C. M. Mannaerts, S. M. Njuki, H. Nouri, Y. Zeng, H. Pelgrum, et al., 2020. Evaluation of WaPOR V2 evapotranspiration products across Africa, Hydrological Processes, 34, 3200-3221, https://doi.org/10.1002/hyp.13791
Bonan, B., C. Albergel, Y. Zheng, A. L. Barbu, D. Fairbairn, S. Munier, and J. C. Calvet, 2020. An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the land data assimilation system LDAS-Monde: application over the Euro-Mediterranean region, Hydrology and Earth System Sciences, 24, 325-347, https://doi.org/10.5194/hess-24-325-2020
Brocca, L., C. Massari, T. Pellarin, P. Filippucci, L. Ciabatta, S. Camici, et al., 2020. River flow prediction in data scarce regions: soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa, Scientific Reports, 10, 12517, https://doi.org/10.1038/s41598-020-69343-x
Brooke, S. A. S., V. Ganti, A. J. Chadwick, and M. P. Lamb, 2020. Flood variability determines the location of lobe-scale avulsions on deltas: Madagascar, Geophysical Research Letters, 47, e2020GL088797, https://doi.org/10.1029/2020GL088797
Bruciaferri, D., G. Shapiro, S. Stanichny, A. Zatsepin, T. Ezer, F. Wobus, et al., 2020. The development of a 3D computational mesh to improve the representation of dynamic processes: The Black Sea test case, Ocean Modelling, 146, 101534, https://doi.org/10.1016/j.ocemod.2019.101534
Brun, A. A., N. Ramirez, O. Pizarro, and A. R. Piola, 2020. The role of the Magellan Strait on the southwest South Atlantic shelf, Estuarine, Coastal and Shelf Science, 237, 106661, https://doi.org/10.1016/j.ecss.2020.106661
Brutsaert, W., L. Cheng, and L. Zhang, 2020. Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach, Journal of Hydrometeorology, 21, 287-298, https://doi.org/10.1175/jhm-d-19-0208.1
Burek, P., Y. Satoh, T. Kahil, T. Tang, P. Greve, M. Smilovic, et al., 2020. Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management, Geoscientific Model Development, 13, 3267-3298, https://doi.org/10.5194/gmd-13-3267-2020
Calamita, E., 2020. Modelling the effects of large dams on water quality in tropical rivers, ETH Zürich, PhD thesis.
Camici, S., C. Massari, L. Ciabatta, I. Marchesini, and L. Brocca, 2020. Which rainfall score is more informative about the performance in river discharge simulation? A comprehensive assessment on 1318 basins over Europe, Hydrology and Earth System Sciences, 24, 4869-4885, https://doi.org/10.5194/hess-24-4869-2020
Cammalleri, C., P. Barbosa, and J. V. Vogt, 2020. Evaluating simulated daily discharge for operational hydrological drought monitoring in the Global Drought Observatory (GDO), Hydrological Sciences Journal, 65, 1316-1325, https://doi.org/10.1080/02626667.2020.1747623
Chai, Y., Y. Yue, L. Zhang, C. Miao, A. G. L. Borthwick, B. Zhu, et al., 2020. Homogenization and polarization of the seasonal water discharge of global rivers in response to climatic and anthropogenic effects, Science of The Total Environment, 709, 136062, https://doi.org/10.1016/j.scitotenv.2019.136062
Chawanda, C. J., J. Arnold, W. Thiery, and A. van Griensven, 2020. Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+, Climatic Change, 163, 1307-1327, https://doi.org/10.1007/s10584-020-02924-x
Coffel, E. D., and J. S. Mankin, 2020. Thermal power generation is disadvantaged in a warming world, Environmental Research Letters, 16, 024043, https://doi.org/10.1088/1748-9326/abd4a8
Conticello, F. R., F. Cioffi, U. Lall, and B. Merz, 2020. Synchronization and delay between circulation patterns and high streamflow events in Germany, Water Resources Research, 56, e2019WR025598, https://doi.org/10.1029/2019WR025598
Crochemore, L., K. Isberg, R. Pimentel, L. Pineda, A. Hasan, and B. Arheimer, 2020a. Lessons learnt from checking the quality of openly accessible river flow data worldwide, Hydrological Sciences Journal, 65, 699-711, https://doi.org/10.1080/02626667.2019.1659509
Crochemore, L., M.-H. Ramos, and I. G. Pechlivanidis, 2020b. Can continental models convey useful seasonal hydrologic information at the catchment scale?, Water Resources Research, 56, e2019WR025700, https://doi.org/10.1029/2019WR025700
Degembaeva, N., E. Baibagyshov, F. Betz, B. Cyffka, M. Lauermann, and B. Ayipov, 2020. Floodplain areas along the Naryn River in Kyrgyzstan: assessment of hydrological and climate changes, and its dynamics, Geographica Augustana, 31, 16-26, https://edoc.ku.de/id/eprint/25576/
Dembélé, M., M. Hrachowitz, H. H. G. Savenije, G. Mariéthoz, and B. Schaefli, 2020. Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets, Water Resources Research, 56, e2019WR026085, https://doi.org/10.1029/2019WR026085
Didovets, I., V. Krysanova, F. F. Hattermann, M. del Rocío Rivas López, S. Snizhko, and H. Müller Schmied, 2020. Climate change impact on water availability of main river basins in Ukraine, Journal of Hydrology: Regional Studies, 32, 100761, https://doi.org/10.1016/j.ejrh.2020.100761
Do, H. X., F. Zhao, S. Westra, M. Leonard, L. Gudmundsson, J. E. S. Boulange, et al., 2020. Historical and future changes in global flood magnitude – evidence from a model–observation investigation, Hydrology and Earth System Sciences, 24, 1543-1564, https://doi.org/10.5194/hess-24-1543-2020
Droppers, B., W. H. P. Franssen, M. T. H. van Vliet, B. Nijssen, and F. Ludwig, 2020. Simulating human impacts on global water resources using VIC-5, Geoscientific Model Development, 13, 5029-5052, https://doi.org/10.5194/gmd-13-5029-2020
Eilander, D., A. Couasnon, H. Ikeuchi, S. Muis, D. Yamazaki, H. C. Winsemius, and P. J. Ward, 2020. The effect of surge on riverine flood hazard and impact in deltas globally, Environmental Research Letters, 15, 104007, https://doi.org/10.1088/1748-9326/ab8ca6
Fabre, C., S. Sauvage, J. L. Probst, and J. M. Sánchez-Pérez, 2020. Global-scale daily riverine DOC fluxes from lands to the oceans with a generic model, Global and Planetary Change, 194, 103294, https://doi.org/10.1016/j.gloplacha.2020.103294
Fallah, A., S. O, and R. Orth, 2020. Climate-dependent propagation of precipitation uncertainty into the water cycle, Hydrology and Earth System Sciences, 24, 3725-3735, https://doi.org/10.5194/hess-24-3725-2020
Feng, D., R. Raoufi, E. Beighley, J. M. Melack, M. Goulding, R. B. Barthem, et al., 2020a. Future climate impacts on the hydrology of headwater streams in the Amazon River Basin: Implications for migratory goliath catfishes, Hydrological Processes, 34, 5402-5416, https://doi.org/10.1002/hyp.13952
Feng, S., J. Liu, Q. Zhang, Y. Zhang, V. P. Singh, X. Gu, and P. Sun, 2020b. A global quantitation of factors affecting evapotranspiration variability, Journal of Hydrology, 584, 124688, https://doi.org/10.1016/j.jhydrol.2020.124688
Fordham, G., S. Shanee, and M. Peck, 2020. Effect of river size on Amazonian primate community structure: A biogeographic analysis using updated taxonomic assessments, American Journal of Primatology, 82, e23136, https://doi.org/10.1002/ajp.23136
Friedland, R., A. Stips, B. Grizzetti, A. de Roo, and G. Lessin, 2020. Report on the biogeochemical model of the North-Western European Shelf, JRC Technical Report, Luxembourg, 978-92.
Gädeke, A., V. Krysanova, A. Aryal, J. Chang, M. Grillakis, N. Hanasaki, et al., 2020. Performance evaluation of global hydrological models in six large Pan-Arctic watersheds, Climatic Change, 163, 1329-1351, https://doi.org/10.1007/s10584-020-02892-2
Galeazzi, C. P., 2020. From large rivers to the rock record: channel patterns, bedforms and a facies model for the Amazon River, University of São Paulo, PhD thesis.
Ganguli, P., D. Paprotny, M. Hasan, A. Güntner, and B. Merz, 2020. Projected changes in compound flood hazard from riverine and coastal floods in Northwestern Europe, Earth’s Future, 8, e2020EF001752, https://doi.org/10.1029/2020EF001752
Ghausi, S. A., and S. Ghosh, 2020. Diametrically opposite scaling of extreme precipitation and streamflow to temperature in South and Central Asia, Geophysical Research Letters, 47, e2020GL089386, https://doi.org/10.1029/2020GL089386
Greve, P., P. Burek, and Y. Wada, 2020. Using the Budyko Framework for calibrating a global hydrological model, Water Resources Research, 56, e2019WR026280, https://doi.org/10.1029/2019WR026280
Gu, X., Q. Zhang, J. Li, D. Chen, V. P. Singh, Y. Zhang, et al., 2020. Impacts of anthropogenic warming and uneven regional socio-economic development on global river flood risk, Journal of Hydrology, 590, 125262, https://doi.org/10.1016/j.jhydrol.2020.125262
Gunduz, M., E. Özsoy, and R. Hordoir, 2020. A model of Black Sea circulation with strait exchange (2008–2018), Geoscientific Model Development, 13, 121-138, https://doi.org/10.5194/gmd-13-121-2020
Guinaldo, T., 2020. Paramétrisation de la dynamique lacustre dans un modèle de surface couplé pour une application à la prévision hydrologique à l’échelle globale, University of Toulouse, PhD thesis.
Hagemann, S., T. Stacke, and H. T. M. Ho-Hagemann, 2020. High resolution discharge simulations over Europe and the Baltic Sea catchment, Frontiers in Earth Science, 8, https://doi.org/10.3389/feart.2020.00012
Han, J., Y. Yang, M. L. Roderick, T. R. McVicar, D. Yang, S. Zhang, and H. E. Beck, 2020. Assessing the steady-state assumption in water balance calculation across global catchments, Water Resources Research, 56, e2020WR027392, https://doi.org/10.1029/2020WR027392
Hansford, M., 2020. The effects of climate on fluvial discharge and key controls of fluvial fans: a quantitative study, Colorado School of Mines, PhD thesis.
Hansford, M. R., and P. Plink-Björklund, 2020. River discharge variability as the link between climate and fluvial fan formation, Geology, 48, 952-956, https://doi.org/10.1130/G47471.1
Harrigan, S., E. Zsoter, L. Alfieri, C. Prudhomme, P. Salamon, F. Wetterhall, et al., 2020. GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth System Science Data, 12, 2043-2060, https://doi.org/10.5194/essd-12-2043-2020
Hatono, M., and K. Yoshimura, 2020. Development of a global sediment dynamics model, Progress in Earth and Planetary Science, 7, 59, https://doi.org/10.1186/s40645-020-00368-6
Hu, Z., 2020. Earth observation for the assessment of long-term snow dynamics in European mountains - analysing 35-year snowline dynamics in Europe based on high resolution Earth Observation data between 1984 and 2018, Julius-Maximilians-Universität Würzburg, PhD thesis.
Huang, S., H. Shah, B. S. Naz, N. Shrestha, V. Mishra, P. Daggupati, et al., 2020. Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins, Climatic Change, 163, 1143-1164, https://doi.org/10.1007/s10584-020-02872-6
Hulsman, P., H. C. Winsemius, C. I. Michailovsky, H. H. G. Savenije, and M. Hrachowitz, 2020. Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region, Hydrology and Earth System Sciences, 24, 3331-3359, https://doi.org/10.5194/hess-24-3331-2020
Hundecha, Y., J. Parajka, and A. Viglione, 2020. Assessment of past flood changes across Europe based on flood-generating processes, Hydrological Sciences Journal, 65, 1830-1847, https://doi.org/10.1080/02626667.2020.1782413
Johnson, K. A., O. E. J. Wing, P. D. Bates, J. Fargione, T. Kroeger, W. D. Larson, et al., 2020. A benefit–cost analysis of floodplain land acquisition for US flood damage reduction, Nature Sustainability, 3, 56-62, https://doi.org/10.1038/s41893-019-0437-5
Jolliet, O., C. Wannaz, J. Kilgallon, L. Speirs, A. Franco, B. Lehner, et al., 2020. Spatial variability of ecosystem exposure to home and personal care chemicals in Asia, Environment International, 134, 105260, https://doi.org/10.1016/j.envint.2019.105260
Kabuya, P. M., D. A. Hughes, R. M. Tshimanga, M. A. Trigg, and P. Bates, 2020. Establishing uncertainty ranges of hydrologic indices across climate and physiographic regions of the Congo River Basin, Journal of Hydrology: Regional Studies, 30, 100710, https://doi.org/10.1016/j.ejrh.2020.100710
Khaki, M., B. Ait-El-Fquih, and I. Hoteit, 2020. Calibrating land hydrological models and enhancing their forecasting skills using an ensemble Kalman filter with one-step-ahead smoothing, Journal of Hydrology, 584, 124708, https://doi.org/10.1016/j.jhydrol.2020.124708
Knighton, J., V. Vijay, and M. Palmer, 2020. Alignment of tree phenology and climate seasonality influences the runoff response to forest cover loss, Environmental Research Letters, 15, 104051, https://doi.org/10.1088/1748-9326/abaad9
Kodirov, S., and S. Zaitov, 2020. Long-term forecasts of water availability in small foothill rivers of Uzbekistan, IOP Conference Series: Materials Science and Engineering, 883, 012072, https://doi.org/10.1088/1757-899x/883/1/012072
Krug, A., C. Primo, S. Fischer, A. Schumann, and B. Ahrens, 2020. On the temporal variability of widespread rain-on-snow floods, Meteorologische Zeitschrift, 11, 1-13, https://doi.org/10.1127/metz/2020/0989
Krysanova, V., J. Zaherpour, I. Didovets, S. N. Gosling, D. Gerten, N. Hanasaki, et al., 2020. How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change, Climatic Change, 163, 1353-1377, https://doi.org/10.1007/s10584-020-02840-0
Lauerwald, R., P. Regnier, B. Guenet, P. Friedlingstein, and P. Ciais, 2020. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: A case study for the Amazon Basin, One Earth, 3, 226-236, https://doi.org/10.1016/j.oneear.2020.07.009
Le Guennec, V. N. R., 2020. Exploring multi-annual changes in the biophysical environment of the Black Sea, University of Liverpool, PhD thesis.
Lee, J., 2020. Quantifying historical impact of groundwater irrigation practices to the ecological environment and the availability of the High Plains Aquifer, University of Utrecht, Master’s thesis.
Li, Z., Y. Chen, Y. Li, and Y. Wang, 2020. Declining snowfall fraction in the alpine regions, Central Asia, Scientific Reports, 10, 3476, https://doi.org/10.1038/s41598-020-60303-z
Liang, S., and R. Greene, 2020. A high-resolution global runoff estimate based on GIS and an empirical runoff coefficient, Hydrology Research, 51, 1238-1260, https://doi.org/10.2166/nh.2020.132
Liu, M., 2020. Better understanding of permafrost in Lena and Yenisei river basins, Universität Stuttgart, Master’s thesis.
Liu, Y., T. Wagener, H. E. Beck, and A. Hartmann, 2020a. What is the hydrologically effective area of a catchment?, Environmental Research Letters, 15, 104024, https://doi.org/10.1088/1748-9326/aba7e5
Liu, Y. R., Y. P. Li, and J. Sun, 2020b. A two-stage fuzzy-stochastic factorial analysis method for characterizing effects of uncertainties in hydrological modelling, Hydrological Sciences Journal, 65, 2057-2071, https://doi.org/10.1080/02626667.2020.1790566
Liu, Z., L. Cheng, G. Zhou, X. Chen, K. Lin, W. Zhang, et al., 2020c. Global response of evapotranspiration ratio to climate conditions and watershed characteristics in a changing environment, JGR Atmospheres, 125, e2020JD032371, https://doi.org/10.1029/2020JD032371
Luo, Y., Y. Yang, D. Yang, and S. Zhang, 2020. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework, Journal of Hydrology, 590, 125389, https://doi.org/10.1016/j.jhydrol.2020.125389
Martens, B., D. L. Schumacher, H. Wouters, J. Muñoz-Sabater, N. E. C. Verhoest, and D. G. Miralles, 2020. Evaluating the land-surface energy partitioning in ERA5, Geoscientific Model Development, 13, 4159-4181, https://doi.org/10.5194/gmd-13-4159-2020
McDowell, R. W., A. Noble, P. Pletnyakov, and L. M. Mosley, 2020. Global database of diffuse riverine nitrogen and phosphorus loads and yields, Geoscience Data Journal, 8, 132-143, https://doi.org/10.1002/gdj3.111
Merz, R., L. Tarasova, and S. Basso, 2020. The flood cooking book: ingredients and regional flavors of floods across Germany, Environmental Research Letters, 15, 114024, https://doi.org/10.1088/1748-9326/abb9dd
Miao, Y., and A. Wang, 2020. A daily 0.25° × 0.25° hydrologically based land surface flux dataset for conterminous China, 1961–2017, Journal of Hydrology, 590, 125413, https://doi.org/10.1016/j.jhydrol.2020.125413
Miladinova, S., A. Stips, D. Macias Moy, and E. Garcia-Gorriz, 2020a. Pathways and mixing of the north western river waters in the Black Sea, Estuarine, Coastal and Shelf Science, 236, 106630, https://doi.org/10.1016/j.ecss.2020.106630
Miladinova, S., A. Stips, D. Macias Moy, and E. Garcia-Gorriz, 2020b. Seasonal and inter-annual variability of the phytoplankton dynamics in the Black Sea inner basin, Oceans, 1, 251-273, https://www.mdpi.com/2673-1924/1/4/18
Munia, H. A., J. H. A. Guillaume, Y. Wada, T. Veldkamp, V. Virkki, and M. Kummu, 2020. Future transboundary water stress and its drivers under climate change: a global study, Earth’s Future, 8, e2019EF001321, https://doi.org/10.1029/2019EF001321
Nguyen, V. D., A. D. Metin, L. Alfieri, S. Vorogushyn, and B. Merz, 2020. Biases in national and continental flood risk assessments by ignoring spatial dependence, Scientific Reports, 10, 19387, https://doi.org/10.1038/s41598-020-76523-2
Núñez, M., and M. Finkbeiner, 2020. A regionalised life cycle assessment model to globally assess the environmental implications of soil salinization in irrigated agriculture, Environmental Science & Technology, 54, 3082-3090, https://doi.org/10.1021/acs.est.9b03334
O’Loughlin, F. E., J. Neal, G. J. P. Schumann, E. Beighley, and P. D. Bates, 2020. A LISFLOOD-FP hydraulic model of the middle reach of the Congo, Journal of Hydrology, 580, 124203, https://doi.org/10.1016/j.jhydrol.2019.124203
Onyutha, C., 2020. Graphical-statistical method to explore variability of hydrological time series, Hydrology Research, 52, 266-283, https://doi.org/10.2166/nh.2020.111
Qin, J., Y.-J. Ding, Q.-D. Zhao, S.-P. Wang, and Y.-P. Chang, 2020. Assessments on surface water resources and their vulnerability and adaptability in China, Advances in Climate Change Research, 11, 381-391, https://doi.org/10.1016/j.accre.2020.11.002
Robinson, E. L., and D. B. Clark, 2020. Using gravity recovery and climate experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitudes, Hydrology and Earth System Sciences, 24, 1763-1779, https://doi.org/10.5194/hess-24-1763-2020
Roehrig, R., I. Beau, D. Saint-Martin, A. Alias, B. Decharme, J.-F. Guérémy, et al., 2020. The CNRM global atmosphere model ARPEGE-Climat 6.3: description and evaluation, Journal of Advances in Modeling Earth Systems, 12, e2020MS002075, https://doi.org/10.1029/2020MS002075
Rottler, E., T. Francke, G. Bürger, and A. Bronstert, 2020. Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle, Hydrology and Earth System Sciences, 24, 1721-1740, https://doi.org/10.5194/hess-24-1721-2020
Ruijsch, J., 2020. Systemic Change in Hydrology: Spatio-temporal parameter variability of the PCR-GLOBWB hydrological model in the Rhine-Meuse basin, University of Utrecht, Master’s thesis.
Scaini, A., D. Zamora, J. Livsey, S. W. Lyon, R. Bommarco, M. Weih, et al., 2020. Hydro-climatic controls explain variations in catchment-scale nitrogen use efficiency, Environmental Research Letters, 15, 094006, https://doi.org/10.1088/1748-9326/ab9691
Schmidt, L., F. Heße, S. Attinger, and R. Kumar, 2020. Challenges in applying machine learning models for hydrological inference: a case study for flooding events across Germany, Water Resources Research, 56, e2019WR025924, https://doi.org/10.1029/2019WR025924
Shi, H., G. Luo, H. Zheng, C. Chen, J. Bai, T. Liu, et al., 2020. Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River basin, Journal of Hydrology, 581, 124387, https://doi.org/10.1016/j.jhydrol.2019.124387
Stokes, G. L., A. J. Lynch, B. S. Lowe, S. Funge-Smith, J. Valbo‐Jørgensen, and S. J. Smidt, 2020. COVID-19 pandemic impacts on global inland fisheries, Proceedings of the National Academy of Sciences, 117, 29419-29421, https://doi.org/10.1073/pnas.2014016117
Straatsma, M., P. Droogers, J. Hunink, W. Berendrecht, J. Buitink, W. Buytaert, et al., 2020. Global to regional scale evaluation of adaptation measures to reduce the future water gap, Environmental Modelling & Software, 124, 104578, https://doi.org/10.1016/j.envsoft.2019.104578
Stradiotti, P., 2020. Fluvial flood risk: an inundation modelling study to analyze the contribution of river embankments to flood risk downstream, Utrecht University, Master’s thesis.
Sun, Q., C. Miao, A. AghaKouchak, I. Mallakpour, D. Ji, and Q. Duan, 2020. Possible increased frequency of ENSO-related dry and wet conditions over some major watersheds in a warming climate, Bulletin of the American Meteorological Society, 101, E409-E426, https://doi.org/10.1175/bams-d-18-0258.1
Tarasova, L., S. Basso, and R. Merz, 2020. Transformation of generation processes from small runoff events to large floods, Geophysical Research Letters, 47, e2020GL090547, https://doi.org/10.1029/2020GL090547
Tramblay, Y., G. Villarini, and W. Zhang, 2020. Observed changes in flood hazard in Africa, Environmental Research Letters, 15, 1040b5, https://doi.org/10.1088/1748-9326/abb90b
Varlas, G., V. Vervatis, C. Spyrou, E. Papadopoulou, A. Papadopoulos, and P. Katsafados, 2020. Investigating the impact of atmosphere–wave–ocean interactions on a Mediterranean tropical-like cyclone, Ocean Modelling, 153, 101675, https://doi.org/10.1016/j.ocemod.2020.101675
Vorobevskii, I., R. Kronenberg, and C. Bernhofer, 2020. Global BROOK90 R package: an automatic framework to simulate the water balance at any location, Water, 12, 2037, https://doi.org/10.3390/w12072037
Wasko, C., R. Nathan, and M. C. Peel, 2020. Trends in global flood and streamflow timing based on local water year, Water Resources Research, 56, e2020WR027233, https://doi.org/10.1029/2020WR027233
Weerasinghe, I., W. Bastiaanssen, M. Mul, L. Jia, and A. van Griensven, 2020. Can we trust remote sensing evapotranspiration products over Africa?, Hydrology and Earth System Sciences, 24, 1565-1586, https://doi.org/10.5194/hess-24-1565-2020
Wing, O. E., 2020. Understanding flood risk at large spatial scales: testing, development and application of a continental flood hazard model, University of Bristol, PhD thesis.
Winton, R. S., F. Kleinschroth, E. Calamita, M. Botter, C. R. Teodoru, I. Nyambe, and B. Wehrli, 2020. Potential of aquatic weeds to improve water quality in natural waterways of the Zambezi catchment, Scientific Reports, 10, 15467, https://doi.org/10.1038/s41598-020-72499-1
Wootten, A. M., E. C. Massoud, A. Sengupta, D. E. Waliser, and H. Lee, 2020. The effect of statistical downscaling on the weighting of multi-model ensembles of precipitation, Climate, 8, 138, https://doi.org/10.3390/cli8120138
Wörman, A., C. B. Uvo, L. Brandimarte, S. Busse, L. Crochemore, M. G. Lopez, et al., 2020. Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe, Applied Energy, 272, 115249, https://doi.org/10.1016/j.apenergy.2020.115249
Xiao, M., Z. Yu, D. Kong, X. Gu, I. Mammarella, L. Montagnani, et al., 2020. Stomatal response to decreased relative humidity constrains the acceleration of terrestrial evapotranspiration, Environmental Research Letters, 15, 094066, https://doi.org/10.1088/1748-9326/ab9967
Yang, X., Y. P. Li, Y. R. Liu, and P. P. Gao, 2020. A MCMC-based maximum entropy copula method for bivariate drought risk analysis of the Amu Darya River Basin, Journal of Hydrology, 590, 125502, https://doi.org/10.1016/j.jhydrol.2020.125502
Yue, M., and W. Aihui, 2020. Evaluation of routed-runoff from land surface models and reanalyses using observed streamflow in Chinese river basins, Journal of Meteorological Research, 34, 73-87, https://doi.org/10.1007/s13351-020-9120-z
Zhai, R., F. Tao, U. Lall, B. Fu, J. Elliott, and J. Jägermeyr, 2020. Larger drought and flood hazards and adverse impacts on population and economic productivity under 2.0 than 1.5°C warming, Earth’s Future, 8, e2019EF001398, https://doi.org/10.1029/2019EF001398
Zhang, C., Y. Yang, D. Yang, Z. Wang, X. Wu, S. Zhang, and W. Zhang, 2020a. Vegetation response to elevated CO2 slows down the eastward movement of the 100th meridian, Geophysical Research Letters, 47, e2020GL089681, https://doi.org/10.1029/2020GL089681
Zhang, H., R. Lauerwald, P. Regnier, P. Ciais, W. Yuan, V. Naipal, et al., 2020b. Simulating erosion-induced soil and carbon delivery from uplands to rivers in a global land surface model, Journal of Advances in Modeling Earth Systems, 12, e2020MS002121, https://doi.org/10.1029/2020MS002121
Zhang, S., Y. Yang, T. R. McVicar, L. Zhang, D. Yang, and X. Li, 2020c. A proportionality-based multi-scale catchment water balance model and its global verification, Journal of Hydrology, 582, 124446, https://doi.org/10.1016/j.jhydrol.2019.124446
Zhao, G., P. Bates, and J. Neal, 2020. The impact of dams on design floods in the conterminous US, Water Resources Research, 56, e2019WR025380, https://doi.org/10.1029/2019WR025380
Zhou, T., L. R. Leung, G. Leng, N. Voisin, H.-Y. Li, A. P. Craig, et al., 2020. Global irrigation characteristics and effects simulated by fully coupled land surface, river, and water management models in E3SM, Journal of Advances in Modeling Earth Systems, 12, e2020MS002069, https://doi.org/10.1029/2020MS002069
Zogheib, C., 2020. Polycentric water resources assessment and governance in data-scarce regions, Imperial College London, PhD thesis.