Global Runoff Data Centre Federal Institute of Hydrology Koblenz, Germany

Report No. 21

# Analysis of long runoff series of selected rivers of the Asia-Pacific region in relation with climate change and El Niño effects

Daniel Cluis Professor at INRS-EAU (University of Quebec) Visiting scientist, GRDC



August 1998

Global Runoff Data Centre Federal Institute of Hydrology Kaiserin-Augusta-Anlagen 15-17 56068 Koblenz Germany Tel. +49 261 1306 5224 Fax +49 261 1306 5280 Emai(RFC822):grdc@koblenz.bfg.bund400.de Email(X.400): c=de;a=bund400;=bfg; o=koblenz; s=grdc

# Forword

Probably the most widely published climate anomaly effects are those of El Niño; however, little is known about hydrological responses. Because of the outstanding impact of El Niño on national and regional economies, this report focusses on long-term trends in discharge time series and their possible relationship with El Niño effects. In this regard, the 1997/98 El Niño event has shown evidence that reliable seasonal forecasts of weather patterns as a result of El Niño activitiy are not far ahead. The prediction of major climate trends on a seasonal basis has a very high potential to forecast the hydrological response of rivers. Long-term forecasts help to reduce or mitigate adverse impacts such as floods and droughts on vital sectors i.e. agriculture, hydropower production and drinking water supply. The detection of structural changes in long time series of discharge is of prime importance to analyze cause-effect relations between climate anomalies including climate change and the response of river systems. In this study, the statistical evaluation of long time series of discharge and the linkage of variations in the discharge behaviour to the Southern Oscillation Index are a means to identify regional patterns of discharge response to El Niño anomalies.

The Asia-Pacific region has been chosen for this study because of its high dependancy on surface water for irrigated agriculture, power generation and water supply of large cities. Regional response patterns were detected using about 80 selected gauging stations with sufficiently long time series. The results of this study contribute to the objective of the detection of changes in river flow due to climate anomalies and change. This is one step towards a long-term forecast of river flow, once large scale hydrological models have been tested for their operational use and a better coupling of the El Niño phenomena and hydrological variables is achieved in the near future.

It is apparent, that this kind of research requires a large amount of high quality hydrological information to enable the regional analysis of hydrological responses to climate anomalies and change. The Global Runoff Data Centre (GRDC) therefore calls upon national hydrological services and the scientific community to supply hydrological data and information to the Centre.

GRDC has a standing invitation to visiting scientists to assist the Centre in the scientific exploitation of its database for a wide range of relevant topics. I am particularly grateful to Professor Daniel Cluis, University of Quebec, Canada, for his valuable contribution during his three months stay at the GRDC and WMO for the support of this research project.

Wolfgang Grabs Head, GRDC

# Content

page

|       | Executive summary                                                    | 1  |
|-------|----------------------------------------------------------------------|----|
| 1     | Introduction                                                         | 3  |
| 1.1   | Purpose of the study                                                 | 3  |
| 1.2   | Data selection                                                       | 3  |
| 2     | Section 1: Structural changes                                        | 5  |
| 2.1   | Homogeneity of the series and long-term trend detection              | 5  |
| 2.1.1 | The segmentation procedure                                           | 5  |
| 2.1.2 | Results                                                              | 6  |
| 2.2   | Non-parametric techniques                                            | 6  |
| 2.2.1 | Weaknesses of parametric techniques with real world data             | 6  |
| 2.2.2 | Classical non-parametric techniques                                  | 7  |
| 2.2.3 | Persistence, effective number of independent observations            |    |
|       | and the Information Content concept                                  | 8  |
| 2.2.4 | Practical use: The DETECT software                                   | 9  |
| 2.3   | Results                                                              | 10 |
| 2.4   | Discussion and synthesis                                             | 10 |
| 2.5   | References of the first section                                      | 11 |
| 3     | Section 2: Influence of El Nino on runoffs of rivers                 |    |
|       | of the Asia Pacific area.                                            | 13 |
| 3.1   | Introduction                                                         | 13 |
| 3.2   | Literature review                                                    | 14 |
| 3.3   | The Southern Oscillation Index (SOI)                                 | 14 |
| 3.4   | Preliminary analysis: a yearly appraisal                             | 15 |
| 3.4.1 | Description and limitations of the discrimination techniques used    | 16 |
| 3.4.2 | Discrimination of the different phases of the ENSO on a yearly basis | 18 |
| 3.5   | Confirmatory analysis: a monthly evaluation                          | 19 |
| 3.6   | Synthesis                                                            | 19 |
| 3.7   | Discussion and direction for further work                            | 20 |
| 3.8   | Operational conclusion                                               | 21 |
| 3.7   | References of the second section                                     | 22 |
| 4     | Conclusions                                                          | 23 |
| 5     | Acknowledgement                                                      | 23 |

# Annexes

| Figure 1 | Borders of WMO regions                                                           |
|----------|----------------------------------------------------------------------------------|
| Figure 2 | Location of the selected stations of the Oceania-Pacific area                    |
| Figure 3 | Location of the selected stations of the Far East Asia area                      |
| Figure 4 | Location of the selected stations of the South East Asia area                    |
| Figure 5 | Location of the selected stations of the Indian Subcontinent area                |
| Figure 6 | Location of the selected stations of the Central Asia area                       |
| Figure 7 | Geographical distribution of the most recent trends in mean runoff detected for  |
| 8        | the selected rivers of the Asia-Pacific.                                         |
| Figure 8 | Geographical distribution of the selected rivers of the Asia-Pacific region      |
| -8       | teleconnected to the ENSO phenomenon.                                            |
|          |                                                                                  |
| Table 1  | Characteristics of the selected rivers of the Oceania-Pacific area               |
| Table 2  | Characteristics of the selected rivers of the Far East Asia area                 |
| Table 3  | Characteristics of the selected rivers of the South East Asia area               |
| Table 4  | Characteristics of the selected rivers of the Indian Subcontinent area           |
| Table 5  | Characteristics of the selected rivers of the Central Asia area                  |
| Table 6  | Segmentations of the mean yearly discharges (OP area)                            |
| Table 7  | Segmentations of the maximum monthly discharges (OP area)                        |
| Table 8  | Segmentations of the minimum monthly discharges (OP area)                        |
| Table 9  | Segmentations of the mean yearly discharges (FEA area)                           |
| Table 10 | Segmentations of the maximum monthly discharges (FEA area)                       |
| Table 11 | Segmentations of the minimum monthly discharges (FEA area)                       |
| Table 12 | Segmentations of the mean yearly discharges (SEA area)                           |
| Table 13 | Segmentations of the maximum monthly discharges (SEA area)                       |
| Table 14 | Segmentations of the minimum monthly discharges (SEA area)                       |
| Table 15 | Segmentations of the mean yearly discharges (ISC area)                           |
| Table 16 | Segmentations of the maximum monthly discharges (ISC area)                       |
| Table 17 | segmentations of the minimum monthly discharges (ISC area)                       |
| Table 18 | Segmentations of the mean yearly discharges (CA area)                            |
| Table 19 | Segmentations of the maximum monthly discharges (CA area)                        |
| Table 20 | Segmentations of the minimum monthly discharges (CA area)                        |
| Table 21 | Information Content of a single observation, according to the length of the      |
|          | sample n and of the estimated lag-1 autocorrelation coefficien $r_1$ .           |
| Table 22 | "Effective" number of independent observations for variuous combinations of      |
|          | autocorrelation coefficients $r_1$ and series lengths n.                         |
| Table 23 | Set of non-parametric tests for monotonic and stepwise trend detection available |
|          | for independent/dependent, seasonal and non-seasonal time series.                |
| Table 24 | Trends in mean yearly discharges (OP area)                                       |
| Table 25 | Trends in maximum monthly discharges (OP area)                                   |
| Table 26 | Trends in minimum monthly discharges (OP area)                                   |
| Table 27 | Trends in mean yearly discharges (FEA area)                                      |

| Table 28 | Trends in maximum monthly discharges FEA area)                                       |
|----------|--------------------------------------------------------------------------------------|
| Table 29 | Trends in minimum monthly discharges (FEA area)                                      |
| Table 30 | Trends in mean yearly discharges (SEA area)                                          |
| Table 31 | Trends in maximum monthly discharges (SEA area)                                      |
| Table 32 | Trends in minimum monthly discharges (SEA area)                                      |
| Table 33 | Trends in mean yearly discharges (ISC area)                                          |
| Table 34 | Trends in maximum monthly discharges (ISC area)                                      |
| Table 35 | Trends in minimum monthly discharges (ISC area)                                      |
| Table 36 | Trends in mean yearly discharges (CA area)                                           |
| Table 37 | Trends in maximum monthly discharges (CA area)                                       |
| Table 38 | Trends in minimum monthly discharges (CA area)                                       |
| Table 39 | Detailed results, for each area, of the trend analysis applied to the 3 types of     |
|          | series investigated (mean yearly, maximum and minimum discharge series).             |
| Table 40 | Counts per decade of the occurrence of upwards and downwards trends in each          |
|          | of the 5 areas.                                                                      |
| Table 41 | Regional synthesis of the trend analysis.                                            |
| Table 42 | Southern Oscillation Indices (SOI) and identification of El Nino and La Nina         |
|          | years and months.                                                                    |
| Table 43 | Distribution, by type of year, of runoffs of rivers in the Oceania Pacific area.     |
| Table 44 | Distribution, by type of year, of runoffs of rivers in the Far East Asia area.       |
| Table 45 | Distribution, by type of year, of runoffs of rivers in the South East Asia area.     |
| Table 46 | Distribution, by type of year, of runoffs of rivers in the Indian Subcontinent area. |
| Table 47 | Distribution, by type of year, of runoffs of rivers in the Central Asia area.        |
| Table 48 | Duncan test, parametric and non-parametric ANOVA results for the                     |
|          | discrimination of El Nino, La Nina and Neutral years (Oceania Pacific area).         |
| Table 49 | Duncan test, parametric and non-parametric ANOVA results for the                     |
|          | discrimination of El Nino, La Nina and Neutral years (Far East Asia area).           |
| Table 50 | Duncan test, parametric and non-parametric ANOVA results for the                     |
|          | discrimination of El Nino, La Nina and Neutral years (South East Asia area).         |
| Table 51 | Duncan test, parametric and non-parametric ANOVA results for the                     |
|          | discrimination of El Nino, La Nina and Neutral years (Indian Subcontinent            |
|          | area).                                                                               |
| Table 52 | Duncan test, parametric and non-parametric ANOVA results for the                     |
|          | discrimination of El Nino, La Nina and Neutral years (Central Asia area).            |
| Table 53 | Monthly runoff distribution according to SOI classification (Oceani Pacific area).   |
| Table 54 | Monthly runoff distribution according to SOI classification (Far East Asia area).    |
| Table 55 | Monthly runoff distribution according to SOI classification (South East Asia area).  |
| Table 56 | Monthly runoff distribution according to SOI classification (Indian Subcontinent     |
|          | area).                                                                               |
| Table 57 | Monthly runoff distribution according to SOI classification (Central Asia area)      |
| Table 58 | Breakdown by area, of the number of stations teleconnected to the different          |
|          | phases of the El Niño phenomenon.                                                    |

.....

# **Executive Summary**

The **Global Runoff Data Centre** (GRDC) in the Federal Institute of Hydrology in Koblenz (Germany) collects and stores a large database of streamflow records for world wide hydrological studies. In this report, runoff records originating from 77 rivers within the Asia-Pacific region with long monthly runoff series and geographically distributed in the whole area have been extracted from the database and selected for study. Given the nature and extent of the database, regional patterns were sought more than individual specific behaviours.

The study was conducted in two directions:

**Firstly**, in the context of climate variability and change, the series were submitted to a trend analysis in order to assess if changes in levels of runoff occurred during their length of record. **Secondly**, the same series were studied to assess the possible relationships between the levels of runoff and the occurrence of the different phases of the **El Niño** phenomenon.

# Long-term trend detection:

For each of the selected rivers, three time series were constructed and analysed: the mean yearly, the maximum and minimum monthly discharges. These series were submitted to a two-tier analysis; first, a **segmentation** procedure developed by Hubert was applied to assess their stationarity; this procedure truncates the series into an optimal number of segments with significantly different constant levels; then, the series that had been segmented by the previous procedure were submitted to a specialized trend detection software; this software uses of the **Information Content** concept developed by Lettenmaier and others, to adapt the classical non-parametric trend detection techniques, which are robust to outliers and non-normal distributions, to persistent and seasonal time series; it contains a complete set of non-parametric tests for monotonic and stepwise trend detection adapted to the cases of dependent/independent, seasonal/non-seasonal time series .

The results show that the monthly minimum runoffs exhibited more changing levels (36/77) than the mean (25/77) and maximum (19/77) ones, about two-third of the series having remained stationary during their years of record. Most of the changes occurred during the sixties and seventies, which constitutes a period of rapid demographic expansion and urbanization in Asia and where irrigation and other water uses were developed, especially in tropical areas. During the same period and within the studied area, a number of large dams and reservoirs were completed and put in operation; these anthropic interventions could be at the origin of the detected trends in runoff.

#### Influence of El Niño phenomenon on runoff:

To characterize the different phases of the El Niño Southern Oscillation (ENSO), the values of the Southern Oscillation Index (SOI) were used; this index which relates to the strength of the Walker circulation at the origin of the phenomenon is published and updated regularly by the Australian Bureau of Meteorology; it is computed according to a method developed by Troup as a standardized anomaly of the monthly Mean Sea Level Pressure (MLSP) differences, measured at Papeete (Tahiti) and Darwin (Australia). After some smoothing, negative values of the index (<-5) correspond of the warm phase (low SOI) of the phenomenon, often referred as the El Niño

**phase**, whereas positive values (>+5) correspond to the cold phase (high SOI) of the phenomenon, often referred as **La Nina phase**; intermediate values correspond to periods referred as normal or **neutral**.

**Yearly analysis**: The calendar years were first classified according to their mean SOI index as belonging to one of the three previously defined phases of the ENSO. Then the quantile distributions (10, 30, 50, 70 and 90 percentiles) of the runoff have been computed. In the Oceania-Pacific area, these distributions are shown to be numerically very differenciated according the ENSO phases; in order to assess differences in mean values parametric and non-parametric **ANOVA** procedures, followed by the **Duncan test** for the equality of several means were performed on the three previously defined runoff series (mean yearly, monthly maximum and monthly minimum); the results confirmed significant differences in the yearly values, between the three defined modalities, particularly in the Oceania-Pacific area.

**Monthly analysis:** Using a more selective monthly time interval to define the runoff values belonging to each of the three phases of the ENSO, the mean monthly discharges were tested for difference with the corresponding compounded value for the same month. These results specify which river runoffs are influenced by either El Niño, La Nina, both or none of the phases of the phenomenon; they also allow to specify which months are affected, what is the expected magnitude of this effect and what is the geographical extent of this **teleconnection**. Two-third of all the studied stations, mostly located South of a line joining the North of Japan to the Caucasus, were shown to be significantly influenced during at least one month by either one or both extreme phases of the ENSO

Direction for further work: Given the fact that SOI values are known and published almost in real time, it is interesting, from an operational point of view, to try to forcast the discharges from these SOI values; but even if some significant correlations (in some cases, up to 50% of explained variance) between synchronous values of runoff and SOI may exist, this can hardly be exploited in a regressive way for forecasting purposes: For a specific time interval, the magnitude of the standard deviation (scatter of the errors of the linear model unexplained by the regression) relative to the mean expected value leads to very wide confidence intervals around the regression line; In these conditions, it seems very doubful that lagged values of the SOI might improve decisively the forecasts and narrow significantly these confidence intervals. But if the discharges were also available almost in real time, then instead of using the lagged regression analysis technique with the sole SOI values as regressors, it would be possible to use for each series the classical Box & Jenkins technique, with first the identification of their internal structures, and then the estimation of the optimal transfer function between them, in order to devise a one-step-ahead forecasting model. Should this model prove to be a good predictor for the monthly runoff (i.e. explaining most of the variance), then the working interval could be widened to two or three months and tested for the remaining (reduced) forecasting power in the resulting model; Such models with wider intervals would lead of course to increased operational benefits as they could allow for some needed lag-time between the forecast and the event itself, for mitigation measures to be taken.

Should the Box & Jenkins **monthly** model be unsatisfactory, then there will be no need to pursue in this direction: Some other type of external information would be needed to try to build a better forecasting model; let's remind here that no information related to the precipitation, neither in amount nor in timing, was introduced in this study.

### 1. Introduction

The **Global Runoff Data Centre** (GRDC) in the German Federal Institute of Hydrology (BfG), Koblenz, (Germany) operates under the auspices of the World Meteorological Organization (WMO). One of its objectives is to collect discharge time series of the rivers of the world, to store them in a unified data bank with a consistent format and to disseminate this acquired information for scientific use. This exchange of data allows interesting regional syntheses to be made, exploiting information otherwise disseminated at the country level. Such an availability of regional data leads to a better global knowledge of the river regimes (mean values and seasonal distribution of discharges), as well as of the availability of surface water resources which constitute an important part of the terrestrial hydrologic cycle.

On the scientific front, this data bank constitutes a major contribution to the water budgets of the world oceans and to Global Circulation Models (GCM) which are an increasingly important tool to provide a better insight and understanding of phenomena driving the Earth's climatic environment. In this period of apprehended climatic changes and of devastating "El Niño" effects, it provides an unbiased reference against which hypotheses can be statistically tested and assessed.

In a more practical way, water availability constitutes for many countries a vital but scarce and dwindling resource which limits their actual and future food self-sufficiency possibilities. For these mostly tropical and equatorial countries, any change in the long-term availability of water will be, both economically and politically of basic survival importance for their future well-being.

### 1.1 Purpose of the study

The purpose of the study was to investigate the long-time behaviour of selected Asian and Oceanian river discharges chosen in WMO regions II and V (Figure 1), in two directions:

• Section 1: First to examine and test the eventuality of structural changes (trends) in the discharge data, related to possible modifications either of regional climatic changes or in land and water uses within the river basins.

• Section 2: Second, to assess a possible relationship between a temporal ENSO Index and regional discharges of rivers, by studying for example, the relative levels of yearly discharges for Niño and non-Niño years, as well the existence of a possible lagged relationship between such an index and discharges as a teleconnected signal of the ENSO outside of its region of origin.

### 1.2 Data selection

The data were directly selected from the GRDC data bank using the GRDC Catalogue Tool software (Version 2.1 for Windows 95-NT). This software allows to query for data according to specific successive selection criteria:

•request for daily or monthly data series

•by WMO regions (6 continental entities) or sub-region numbers (regional entities or watersheds).

- •by river name or GRDC station number.
- •by country code.
- •by range of operational years.
- •by size of river basins.

Once the query file for stations is completed, the GRDC database system extracts the required selected data and provides them to the user as an ASCII file. In this case, stations with **monthly** records from WMO regions 5 (Oceania-Pacific) and 2 (Asia) were extracted from the GRDC database. A working data set of about 80 stations was obtained by using the following criteria, used as selection guidelines:

• Length of operation: The selected stations present a record of a minimum of 25 years of continuous operation until recent years, with less than 5% missing data.

• Regional representativity: The selected stations should drain large areas, making them representative of their climatic regions and less sensitive to local meteorological events. As far as possible, their watershed should be free from seasonal water storage resulting from dam or reservoir operation, from large water derivations and from significant changes in land and water uses.

• Geographical distribution: The chosen stations are distributed within the whole Asia-Pacific region according to the availability of long time series within the database and to the adherence to the selection criteria. They are grouped into five regional geographical subsets to allow possible regionalisation of the obtained results. These 5 subsets are: Oceania-Pacific (19), South-East Asia (9), Far East Asia (25), Indian Subcontinent (11), Central Asia (13). The location of the gauging stations is shown in Figures 2 to 6.

According to the GRDC procedures, the countries provide their discharge data for storage in the database and are solely responsible for the quality of these data. Lacking information about the quality and homogeneity of the data, non-parametric trend detection techniques as described and used later in this report seem to be the most appropriate techniques even if some detection power is lost and traded for robustness; on the other hand, very little is known about the land and water uses of the water basin areas controlled by the stations; this is also true for historic changes within the river basin, human interventions, derivations or impoundments that might have occurred during the whole extend of the discharge records. These uncertainties need to be considered in the interpretation of the results obtained in this study and for decisions to be eventually derived. Generally speaking, the results should be interpreted in a regional context and not for individual stations.

The selected stations of the Asia-Pacific region used for this study are presented for each subset on Tables 1 to 5. The tables present, for each river, its GRDC station number, the country code of its location, the name of the river and of the related gauging station, its longitude and latitude, the watershed area, the first and last full year of operation, the percentage of missing data and the total length of record in years. The data extracted from the database and used throughout the analysis are the monthly discharges from which yearly values were compounded.

#### 2. Section 1: Assessment of structural changes

#### 2.1 Homogeneity of the series and long-term trend detection

As a preliminary analysis, a **segmentation procedure** was applied to yearly series. First the few monthly missing values were completed using the long-term monthly mean values as fill-ins; this procedure was generally applied with the exception of the cases where such a synthetic value would become a yearly maximum or minimum; in such a case, an interpolated value calculated between successive months was preferred as to generate an occasional missing monthly value; then 3 series of yearly values were created for analysis:

- A mean yearly series obtained from the 12 monthly values,

- A yearly series of monthly maximum values, abbreviated as maximum monthly series,

- A yearly series of monthly minimum values, abbreviated as **minimum monthly** series.

The first series should allow the detection of temporal change in the mean level of the series, and the two last series reflect the change in levels of extreme (high or low) events over time.

#### **2.1.1** The segmentation procedure

The segmentation procedure was developed by Hubert et al. (1989) and has found many applications, especially for testing the homogeneity and stationarity in the mean of West African precipitation and discharge records.

Essentially, this procedure determines for a record of a given length, the optimal segmentation of this series into 2, 3, 4 etc. segments of constant levels (stepwise change); "Optimal" is meant here in the sense that the Root Mean Square Error between the measured data and the model (the different levels of each segment) is minimal.

For a series of length **n**, the number of possible segmentations into **m** segments N(n,m) can be expressed as the number of combination (m-1) to (m-1) of (n-1) objects:

#### N(n,m) = (n-1)! / [(m-1)! (n-m)!]

This number becomes quickly very large and the authors have developed an optimization algorithm based on arborescences that allows to avoid testing the bulk of the possible combinations. The search for the optimal segmentation is completed by a constraint applied to the produced segmentations; segments will only be accepted if the means of contiguous segments are significatively different; this can be tested using the contrast concepts introduced by Scheffé (1959) and presented by Dagnelie (1970). The Scheffé test allows to limit the order of the segmentations. Once the optimal segmentation is obtained, the residuals (differences between data values and the local segmentation level) are tested for independence (Wald-Wolfowitz, 1943).

This procedure makes no hypothesis about the distributional or persistence structure of the data; The authors have tested the fiability of their procedure using Monte-Carlo simulations on constructed stationary series and found that the Scheffé test on the absence of contrast was often rejecting falsely the stationarity hypothesis, i.e. oversegmenting stationary series. In fact, the significance level of the procedure is not related in a simple manner to that of the Scheffé test itself. For this reason the procedure has been and can be successfully used as an exploratory analysis.

## 2.1.2 Results

We used the segmentation software developed and provided by the authors and ran it on the 3 yearly series of interest : the mean, maximum and minimum monthly series. It was applied to the discharge data of the selected rivers of the Asia-Pacific region as described on Tables 1 to 5. For these runs, the significance level of 0.01 for the Scheffé test was used and, in addition, we limited the investigation to a maximum of 3 segmentations for a record.

The results are presented on Tables 6 to 8 for the Oceania-Pacific area, on Tables 9 to 11 for the Far East Asia area, on Tables 12 to 14 for the South-East Asia area, on Table 15 to 17 for the Indian Subcontinent area and on Tables 18 to 20 for the Central Asia area.

On these tables, one can see that about **half** of the series are **not segmented at all** during their period of record. The least segmented series is the **yearly** series of **monthly maximum** which presents generally the relatively larger standard deviations, followed by the series of **yearly means** and then by the series of **monthly minimum**. One can note that, from the three studied yearly series (yearly means, monthly maximum and monthly minimum), the series of the monthly minimum are the ones that are **mostly truncated into segments**, which makes sense as low flow values as the most prone to reflect **local anthropic interventions** as flow diversions for irrigation purposes in the dry season. Also to be noted is the **large** magnitude of the historical changes in levels demonstrated during the analysis by some Australian rivers; it is also apparent that, on the **Indian Subcontinent** and **in South-East Asia**, many rivers have exhibited a steady **downwards** trends starting at the **end of the sixties until now, possibly reflecting** an increased water use for irrigation, industrialization or municipal uses (Tables 12 and 15). Also, on Table 18, one can clearly appreciate the historical fate of the rivers **Amu-Darya and Syr-Darya**, flowing into the **Aral sea**, but lately largely **diverted** for a widespread irrigation of cotton fields.

#### 2.2 Non-parametric techniques

#### 2.2.1 Weaknesses of parametric techniques with real world data

Most of the classical statistical tests and techniques have been developed with restricting hypotheses of normality and independence. It is well known that, for example, extreme values (such as **outliers**) have an determining impact on the results of a classical parametric linear regression and that variance-stabilizing transformations (such as Box-Cox) modify the relative weights of the data; after such transformation, the obtained results are only relevant to the transformed variables, not to the original ones.

**Real-life** data diverge from these theoretical considerations: Most natural resources data exhibit not normal, but generally positively skewed distributions; they present, often simultaneously, all three types of persistence: the short-term persistence, the annual seasonality and eventually some long-term trends. These 3 components are reflected and compounded by the autocorrelogram. To deal with this type of "**messy**" data (from the standpoint of the theoretician), which are more the rule than the exception in the nature, one has to look for **robust** techniques i.e techniques that give acceptable results, even if the basic theoretical hypotheses are not fully respected. This has to be quantified: What kind of non-normality, what kind of persistence gives still valid results for tests that require normality and independence? What is the loss of **power** of robust techniques versus classical ones? This is generally quantified by Monte-Carlo simulations where samples constructed with a known contaminated

structures are submitted to both types of tests.

Robust techniques can be divided into two classes : the non-parametric and the parametric ones; they constitute an active field of investigation for statisticians as oddly structured data are a fact of life and should also be statistically exploited.

Non-parametric techniques are based on the **ranks** of the data within the sample; As such, they are, from the start, unaffected by the shape of the distribution, and are also robust to outliers, as each data has the same relative unit weight in any analysis.

Montgomery and Loftis (1987) studied the effects of non-normality, unequal variances, temporal persistence, seasonal fluctuations and unevenly spaced data on the results obtained using Student's t test; they showed that this test should not be used if the samples have different distributions, unequal variances or lengths. In addition, seasonal variations or temporal persistence invalidate the results. Helsel (1987) has described the advantages of non-parametric procedures over parametric ones for the treatment of messy data.

One has to note that most of the developments on non parametric procedures were obtained during the last 25 years to exploit the water quality data bases resulting from monitoring programs induced by environmental concerns. These data were the archetype of messy data: The series were short, unequally sampled, contained outliers as well as censured or truncated values and were drawn from non-normal distributions; they also contained the 3 types of intricated persistence: the short-term, the seasonal and the long term. Thus it was quite difficult to answer the very practical question whether the state of the environment was improving or deteriorating which was and remains a very actual question.

# 2.2.2 Classical non-parametric techniques

Although classical non-parametric trend tests such as the Mann-Whitney and the Spearman tests are very useful for the detection of monotonic or stepwise trends, they do not address the problems of temporal persistence and of seasonal fluctuations often found in hydrological data. In the last 20 years, a number of authors have attempted to adapt non-parametric tests to allow trend detection, without being influenced by other types of short-term interdependences. The method can be considered as the reverse of the decomposition performed in the Box-Jenkins method, in which the short-term structure is obtained both with differentiation, a non-discriminating technique to make any series stationary and by the identification of the seasonal fluctuations. In non-parametric techniques, two particular types of trend are considered:

The first is a **stepwise** (or jump-in-the-mean) trend where, at some time point, a sudden change of levels occurs as the result of some intervention; mean levels before and after this date are compared using the **Mann-Whitney** test, or a suitable modification of it, to test if they are significantly different.

The second trend type is a progressive, **monotonic** evolution of the series level with time. In this case **Spearman**'s or **Kendall**'s test (or a suitable modification of them) can be applied, using time as the independent variable.

# **2.2.3** Persistence, Effective number of independent observations and the Information Content concept.

Testing for trend is related to testing on confidence levels related to the accuracy of the mean (Matalas and Langbein, 1962); This variance of the mean of a sample is related to the number of observations and to the variance of the sample. If for a fixed and given period, the number of samples rises, then, these observations become more and more dependent and autocorrelated. Physically, this means that each observation contains some part of the information already available in the previous and in the following ones. This property is called a **redundancy in information** which might be sometime useful for filling-in occasionally missing data. Conversely one can also define an equivalent number of independent observations  $n^*$ , lower than n, the actual number of observations, leading to the same variance of the mean of the sample. Thus each (dependent) observation has an Information Content  $I = n^*/n$ . Then by definition, the variance of the estimate of the mean of an autocorrelated sample can be written:

$$\operatorname{var} \mathbf{m} = \sigma^2 / \mathbf{n}^*.$$

Bayley and Hammersley (1946) have demonstrated that this number  $n^*$  can be related to the actual length of the series and to the correlation structure of the series:

$$1/n^* = [(1/n) + (2/n) \sum_{j=1}^{n-1} (n-j) r_j]^{-1}$$

where  $n^*$  is the effective independent sample size, n the actual sample size and  $r_j$  the sample estimate of the lag j autocorrelation coefficient. In the case of a simple lag-1 autoregressive, Markovian process, Matalas and Langbein (1962) have reduced this equation to a form involving only the lag-1 autocorrelation coefficient. This formulation is important as most of the natural processes follow locally a Markovian-type structure reflecting the progressive loss of memory of the phenomenon:

$$\mathbf{n}^* = \mathbf{n} \left\{ \left[ \frac{1+\mathbf{r}}{1-\mathbf{r}} \right] - \frac{2}{\mathbf{n}} \left[ \frac{\mathbf{r}}{1-\mathbf{r}} \right] / \frac{1-\mathbf{r}^2}{1-\mathbf{r}^2} \right\}^{-1}$$

The Table 21 presents the values of the **Information Content** of one single observation, according to the length of the sample **n** and of the estimated lag-1 autocorrelation coefficient  $\mathbf{r}_1$ : This shows, for example that, in a sample of length 100 and of lag-1 autocorrelation coefficient 0.6, each observation has an **Information Content** of 0.25, reducing the effective length of independent observations to 100 x 0.25 = 25, for what concerns tests related to the accuracy of the mean of the sample.

On the Table 22, this "effective number of independent observations " is presented for some combinations of autocorrelation coefficients  $\mathbf{r}_1$  and series lengths  $\mathbf{n}$ . For example, a series of length 100 and of correlation coefficient of 0.3 is equivalent, for application of trend detection tests, to a series of only 54 independent observations.

Lettenmaier et al. (1976) have studied, using Monte-Carlo simulations, the power of the Spearman' Rho test against linear trend and the power of the Mann-Whitney test against step trend for series presenting a Markovian (AR1) persistence structure. These authors have found

that the documented power curves obtained for the case of independent samples were relevant for the dependent sample case if an equivalent number of independent observations  $\mathbf{n}^*$  was used, instead of the actual length  $\mathbf{n}$  of the sample.

After this breakthrough, Hirsch et al.(1982) investigated the case of the seasonal fluctuations present in the vast majority of hydrological series. Kendall's test (Lehman et al., 1975) is used for each recognized seasonal sub-series and the resulting statistics were added together. This property was exploited to assess if a global trend was present. Unfortunately this test could not be applied if both persistence and seasonality were simultaneously present in the series.

This last problem was investigated by Hirsch and Slack (1984) and by Van Belle and Hughes (1984), the latter presenting a new method for determining if a trend was caused by a particular season.

At this point, a **complete set** of non-parametric tests for monotonic and stepwise trend detection were available for independent/ dependent, seasonal/non-seasonal time series; the decision tree: for choosing the appropriate test according to the structure of the series and to the type of trend to test is presented on the Table 23.

This new set of non-parametric tests is well adapted to the real structure of hydrological data, but as they have been developed only lately, their power has only been partially established (Berryman et al., 1988) and often rely on Monte-Carlo simulations to validate performances. Nevertheless, Bradley (1968) has demonstrated that even under the worst case situations, the power of non-parametric procedures varied between 85% and 96% of that of their parametric counterparts. In fact, when tested with a whole range of asymmetrical distributions, their power generally exceeded that of traditional parametric techniques.

#### 2.2.4 Practical use: The DETECT software.

To exploit on a practical way the new previously described non-parametric tests, an **interactive** software has been written (Cluis, 1988; Cluis et al. 1989) and accepted as a Canadian contribution to the HOMS programme (module K55.2.01) of the World Meteorological Organization (WMO). This software, written in Fortran 77, is composed of stand-alone modules which are executed in succession, using a series of intermediate data files to transfer interim results downstream from the first modules. It performs the following operations:

-Reading of the input data in an appropriate format; Display of the time-series; Interactive appraisal and elimination of obvious outliers.

-Analysis of the frequency of sampling; Anova on months; Interactive grouping of months into seasons and test on the equality of the means of the selected seasons (groupings of months).

-Choice of an equispaced working interval, seasonal or non- seasonal, with several options for filling-in missing data; Analysis of the persistence structure of the working series using significance levels for the sampled autocorrelation coefficient.

-Analysis with inertia graphics (Mass-curves and CUSUM functions, Cluis; 1983. Doerffet et al.; 1991) in order to assess the nature of a possible trend (stepwise or monotonic) and also its eventual time of occurrence. CUSUM (Cumulative Sum) functions are graphical techniques used in Quality Control analysis to detect in real time changes within an industrial fabrication processes; their shapes (parabolic or segmented) reveal typical monotonic or stepwise changes. In our application, we used the technique retrospectively to determine the type of possible

changes and their date of occurrence; this interactive step can be considered to be the interactive counterpart to the search for an optimal segmentation as performed in batch by the procedure developed by Hubert et al.(1989) and previously described.

- Given the previous information, the software performs the trend test adapted to the data, tests the significance of the results and calculates the parametric values pertaining to each segment; The correspondence between the trend model and the data is computed as a RMSE (Root Mean Square Error), which has to be minimized in order to retain the best fitted alternative. In a single time-series, the software may have to be rerun several times whether there were more than one change in level during the length of the record or if computing for either monotonic or stepwise structures lead to non clearly discriminating RMSE. All the choices made by the user are written in a report file for further analysis of the statistical results related to the different options run for the same series.

#### 2.3 Results

All selected series that had been segmented as described on Tables 6 to 20 by following Hubert's procedure were submitted to the specialized non-parametric tests included in the DETECT software; This software takes into account the seasonal and/or persistence structures of the series and redirects the treated series towards the adapted test. In fact, these characteristics (reduced seasonal sub-series lengths, effective number of independent observations  $n^*$ ) are at the root of the recognized over segmentation properties (falsely rejecting the stationarity hypothesis) of the procedure developed by Hubert et al. (1989).

The results pertaining to the Oceania-Pacific area are presented on Tables 24 to 26; one can see that 4 minimum monthly discharge series that had been previously segmented were **revisited** by this actual step as exhibiting no trend (in the mean) after having been submitted to the non-parametric tests. In a similar way, the results pertaining to Far East Asia are presented on Tables 27 to 29; these related to South East Asia, to the Indian Subcontinent and to Central Asia are shown on Tables 30 to 32, on Tables 33 to 35 and on Tables 36 to 38 respectively. In numerous cases, The RMSE criteria to discriminate between step and monotonic trend types are often too close to pass a definitive judgement. In this situation, both alternatives are presented on the tabular results.

#### 2.4 Discussion and synthesis

The Table 39 regroups by area the results obtained by the segmentation procedure and by the non-parametric trend detection tests. On this table, possible multiple level changes for a single series have be counted, **including** the alternate possibilities (i.e. upwards step trend **and** monotonic upwards trend), when results are not discriminating. It shows that almost 80% of the studied series exhibited no change in their mean, minimum or maximum levels during their period of record.

One can also see that the runoff of the rivers of South East Asia that have exhibited trends decreased with time. For all the regions, it is also clear that minimum monthly runoffs were much more prone to changing levels than the mean and maximum ones; this reflects the fact that even small impoundments constructed for various water usages such as irrigation, municipal or industrial uses can significantly change the levels of the low flows. Conversely, dams and

reservoirs can be managed and operated in such a way to guarantee a residual minimal flow in the river at all times, as for navigation or ecological purposes.

The Table 40 synthesizes by region, the number of occurrence of shifts in levels by decades as compounded for all the considered series (mean yearly, maximum monthly and minimum monthly discharges). It provides the count of series for which levels shifted during a given decade. One can see that most of the changes occurred **during the sixties and the seventies**, a period with a rapid demographic expansion and consequently where irrigation was developed, especially in tropical regions.

During the same period, a large number of dams and reservoirs were completed (Vörösmarty et al., 1997; ICOLD, 1984 and 1988), modifying the historical regimes of rivers. This has been the case within the watersheds of some of the larger rivers studied here: The Murrubidgee river (1956) and the Darling river (1960) in Australia, the Nan river (1972) in Thailand, the Godavari river (1976) and the Krishna river (1974, 1982 and 1984) in India, the Syrdaria river (1957) and 1965) and the Ural river (1958) in Kazakhstan, the Yenisei river (1967) and the Ob river (1957) in Russia, the Narin river (1978) in Kirghiztan, the Beijiang river (1973), the Dongjiang river (1974) and last but not least, the Yellow river or Huanghe (1960 and 1968) in China. Some of these **interventions** could be at the origin of the results presented here.

On the other hand, if one looks only at **the most recent changes** having occurred in the **mean yearly** runoff, then the **downwards** trends are clearly predominant as can be seen on the Table 41: Out of 77 series, 52 exhibited no trend, 6 exhibited an upwards trend and 19 exhibited a downwards trend during their length of record. The geographical distribution of these latest changes in mean yearly runoff is presented in Figure 7.

# 2.5 References of the first section

- Berryman, D., Bobee, B., Cluis, D. and J. Haemmerli (1988) Non-parametric tests for trend detection in water times series. Wat. Res. Bull. 24(3):545-556.
- Bradley, J. V. (1968) Distribution-free statistical tests. Prentice-Hall.
- Cluis, D.(1983) Visual techniques for the detection of water quality trends: Double-mass curves and Cusum functions. Envir. Monit. Assess. (3): 173-184.
- Cluis, D. (1988) Environmental follow-up: A mixed parametric and non-parametric approach. Environ. Software 3(3):117-121.
- Cluis, D., C. Langlois, R. Van Coillie and C. Laberge (1989) Development of a software package on trend detection in temporal series. In: Statistical methods for the assessment of point source pollution, p.329-341. CCIW; Chapman and El Shaarawi Eds.

Conover, W.J. (1971) Practical non-parametric statistics, 2nd Ed. John Wiley, New York, 493p

- Doerffel, K., Herfurth, G., Liebich, V. and E. Wendlandt.(1991) The shape of CUSUM an indicator for tendencies in time series. Fresenius J. Anal. Chem. (341):519-523
- Dagnelie P. (1970) Théorie et méthodes statistiques, vol 1 & 2, Gembloux, 378 and 451 p.

- Helsel, D.R. (1987) Advantages of non-parametric procedures for analysis of water quality data. Journal of Hydrological Sciences, 32 (2):179-190.
- Hirsch, R.M. and J.R. Slack (1984) A non- parametric trend test for seasonal data with serial dependence. Wat Res. Res. 20(6):727-732.
- Hirsch, D.R, Slack, J.R. and R.A. Smith (1982) Techniques for trend analysis for monthly water quality data. Wat. Res. Res. (18):107-121.
- Hubert, P., Carbonnel, J.P and A. Chaouche (1989). Segmentation des séries hydrometeorologiques. Application à des séries de précipitations et de débits de l'Afrique de l'Ouest. Journ.of Hydrol. (100):349-367
- ICOLD (1984,1988). World register of dams. First edition and updating. International Commission on large Dams, Paris.
- Lehman, E.L. and H. D'Abrera (1975) Nonparametrics: Statistical methods based on ranks. Holden Day, 457p.
- Lettenmaier, D.P. (1976) Detection of trends in water quality data from records with dependents observations. Water Res. Res. (12) 1037-1046.
- Matalas, N.C. and W. B. Langbein (1962) Information content of the mean. J. Geophys. Res. 67(9):3441-3448.
- Montgomery, R.H. and J.C. Loftis, (1987) Applicability of the t-test for detecting trends in water quality variables. Wat. Res. Bull. (23):653-662.
- Scheffé, M. (1959) The analysis of variance, Wiley, New York, N.Y., 477 p.
- Van Belle, G. and J.P. Hughes (1984) Non-parametric tests for trend in water quality. War. Res. Res. 20(1):127-136
- Vörösmarty, C.J., Sharma, K., Fekete, B., Copeland, A.H., Holden, J., Marble, J. and J.A. Lough (1997). The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26:210-219.
- Wald A.and Wolfowitz J. (1943) An exact test for randomness in the non-parametric case based on serial correlation. Ann. of Math. Stat., Baltimore.

#### 3. Section 2: Influence of El Niño on runoff of rivers of the Asia Pacific area.

# **3.1 Introduction**

It was a time where nuclear tests were reputed to be responsible for all climatic mishaps; nowadays, a South-Pacific phenomenon called **El Niño**, a warm water up welling occurring in the Pacific ocean along the Peruvian shores is blamed by the media for practically any unusual weather and all local extreme meteorological events (e.g. floods, droughts, forest fires, hurricanes, tornadoes, freezing rains) occurring almost anywhere in the world. It is well known that news media and television in particular, present repeatedly to the general public views of catastrophic images of disasters occurring as consequences of extraordinary local meteorological events.

In the context of climate variability and change, much research is currently undertaken into the El Niño Southern Oscillations (ENSO) whose frequency of occurrence is reported to have increased in the recent years. But even with the hypothesis of stationarity (no climate change), it has always been difficult to evaluate the "normality"and the return period of extreme events, as the length of the historically recorded hydrological series rarely exceeds one or two centuries at most, a duration which constitutes a very short period to assess the tail distributions of the underlying parent population. Another question is also the object of numerous investigations: Given the global nature of the atmospheric long-range circulation of air masses at the origin of meteorological events, what is the geographical extent of the influence of the ENSO phenomenon? Which regions of the world are directly or indirectly influenced by it ? This "**teleconnection**" can by far exceed the South-Pacific region. Meteorological events attributed to El Niño are generally very localized and only a few publications (see literature review) have demonstrated a change in the distribution of the volume of precipitation and of runoff during some part of the year.

In this report, advantage is taken of the availability, at the **Global Runoff Data Centre** (GRDC), of a very large database of historical long-time series of runoff of numerous rivers of the world to try to compare these runoff (and especially their high and low values) according to their belonging to different phases of the ENSO; e.g the significance of the differences in discharge distributions for normal and El Niño years will be tested for significance. It is believed the relative magnitude of runoff is a good integrated index for a possible **teleconnection** as it results from the magnitude and from the time of occurrence of precipitation over the whole basin, as convoluted during its transportation within the terrestrial part of the hydrologic cycle.

This study will investigate if the different years can be statistically differentiated on their runoff responses to an SOI index. . Currently, El Niño is monitored **almost in real time** and forecasts are made regularly on its development; thus, if the regions under El Niño influence were to be known, as well as the temporal pattern of the discharges (relative magnitude and timing of occurrence for "normal" and El Niño years), this could be of definite **practical** interest, in the field of agriculture, selection of the next crop, for example) and in **operational hydrology** (management of the levels for dams and reservoirs).

#### 3.2 Literature review

There is large body of literature devoted to the monitoring, understanding, modeling and forecasting of the spatio-temporal evolution of ENSO in its different phases. More scarce is the literature related to the actual operational applications of the acquired understanding of ENSO triggered anomalies. In most cases the relationships between the SOI and hydro meteorological episodes of interest (precipitation, discharge, floods and droughts) are established with **empirical** methods, researching for **categorical** events, the eventuality of significantly different parameters such as their mean value, time of occurrence, etc. With such an approach, Shukla and Paolina (1983) have related the **rain** conditions for India (drought, below-average rain, above average rain, very wet) to the phase (warm, cold) of ENSO.

Ropelewski et al. (1995) have computed the **quantile distributions** (10, 30, 50, 70 and 90 percentiles) of **precipitation** amounts occurring during different types of events (warm, neutral and cold) of the Southern Oscillation phases, for different regions of the world with demonstrated SOI-precipitation relationships. In this regard, it was found that the link between ENSO, rainfall and streamflow is statistically significant in most part of Australia (Chiew et al., 1998), but not sufficiently strong to consistently allow to predict rainfall and streamflow accurately. In all these studies, what has been put in relation was indices, cumulative number of events, cumulative precipitation amounts according to their belonging to empirically-defined phases of ENSO. In fact, the state of the knowledge acquired by TOGA and other programmes, about the practical consequences of ENSO is still blurred and certainly uncomplete (NRC, 1996) in what regards the geographical extent of ENSO related precipitation amounts, timing or distributions, to be even less defined.

#### 3.3 The Southern Oscillation Index (SOI)

The El Niño Southern Oscillation (ENSO) is a phenomenon which affects the large-scale meteorological behaviour of the tropical Pacific Ocean; this oscillation can be characterized by indices based either on variations of sea-temperatures (Sea Surface Temperature anomalies-SST-such as the Kaplan values available for the Niño3 area) or on differences of barometric pressures measured at sea level. In this report, the Southern Oscillation Index (SOI) will be used to quantify the strength of the Walker circulation across the Pacific at the origin of the phenomenon. This index is published and updated regularly by the Australian Bureau of Meteorology and is computed, using a method developed by **Troup** (1965), as the standardized anomaly of monthly Mean Sea Level Pressure (MSLP) differences, measured at **Papeete**, Tahiti (149.6° W, 17.5° S) and **Darwin**, Australia (139.9° E, 12.4° S). It is calculated as follows:

SOI = 
$$10 * [P_{diff} - P_{diffave}] / SD (P_{diff})$$

where:  $P_{diff}$  = Tahiti MSLP - Darwin MSLP

 $P_{diffave}^{dim}$  = long term average (1951-1981) of  $P_{diff}$  for the month

 $SD(P_{diff})$  = standard deviation of P <sub>diff</sub> for the month.

Table 42 presents the monthly SOI indices for the years 1877 to 1997, as computed by the preceding method and published by the Australian Bureau of Meteorology. Other indices have

been proposed by the Climate Prediction Center of NOAA-NCEP, Washington DC, USA (Ropelewski and Jones, 1987), by the Climate Diagnostics Center of NOAA-CIRES, Boulder CO, USA (Wolter and Timlin, 1998) and others. Their differences is quite limited to the number of variables taken into account, by the period of reference and by an eventual normalization.

With this representation, negative values of the index (<-5) correspond to the "warm" phase (low SOI) of the ENSO index, referred often as an El Niño event; positive values (>+5) correspond to the "cold" phase (high SOI) of the ENSO index, also called La Nina event (Philander, 1990). El Niño and La Nina years are identified by smoothing the monthly SOI values by an 11-point moving average and selecting years with 5 consecutive months or more with smoothed SOI values lower than -5 or higher than +5 respectively, and lasting at least 3 seasons. El Niño and La Nina months are identified by smoothing the monthly SOI values by an 5-point moving average and selecting strings of 5 consecutive months or more, with smoothed SOI values lower than -5 or higher than +5 respectively, and lasting at least 3 seasons. In the literature, no precision is given about the definitions of either the year or the seasons, both characteristics being related to the particular climate and regime of the region under study. Under these circumstances, Table 36 presents the labeling of years and months used for this study according to the previously defined criteria, with the restriction that it uses calendar years and disregards the number of seasons that should be present to constitute an event. Periods that were not labelled as belonging to either El Niño or La Nina events were considered as normal or neutral conditions and used as reference.

One can also note that some researchers, recognizing the fact that some El Niño events were lasting more than one year, have tried to differentiate the months of the first year or rising limb by a subscript 0, from the months of the second year or sinking limb subscripted +1; in this study, no such differentiation was attempted.

#### 3.4 Preliminary analysis: a yearly appraisal

Using the previously defined labeling of the years, a preliminary analysis was conducted in order to try to discriminate which areas and which river stations responded significantly to the El Niño/La Nina signals. Three populations of years were created (El Niño, La Nina and Neutral years) and **percentiles** (10%, 30%, 50%, 70% and 90%) of the runoff **distributions**, belonging to these populations were computed.

The results are presented on Tables 43 to 47; on the Table 43, as an example, one can see that, for the Murrumbidge River in Australia, the distribution of the yearly discharges varies from 74 to 2818 m<sup>3</sup>/s for the 10% and 90% percentiles respectively, with a median value of 589 m<sup>3</sup>/s for the years belonging to the La Nina phase. During the El Niño phases, the yearly discharges are distributed from 43 to 1656 m<sup>3</sup>/s for the 10% and 90% percentiles, with a median value of 245 m<sup>3</sup>/s. These values are fairly different: For a same recurrence period the values occurring during the El Niño phases are lower than the corresponding values during the La Nina phases; but a same yearly discharge can occur during either of the phases, but with different frequencies of exceedance. The same kind of behaviour occurs is other areas, but with less contrast than in the Oceania-Pacific area.

In the following part, some statistical techniques will be used in order to pinpoint which stations present statistically different discharges during the three phases of the ENSO; these techniques are applied to the 3 yearly series (mean yearly, monthly maximum and minimum).

#### 3.4.1 Description and limitations of the discrimination techniques used

In this study, two statistical techniques were used: the classical **ANOVA** procedure and the **Kruskall Wallis** test. Both tests are used to test the same hypotheses :

$$\mathbf{H}_{\mathbf{0}}: \boldsymbol{\mu}_{\text{Nina}} = \boldsymbol{\mu}_{\text{Normal}} = \boldsymbol{\mu}_{\text{Nino}}$$

vs  $H_1$ : At least two of the means are different

Where  $\mu_{Nina}$ ,  $\mu_{Normal}$  and  $\mu_{Nino}$  are respectively the runoff means for La Nina, Normal and El Niño phases which are three exclusive modalities of the ENSO factor. The main distinction between these tests is the fact that **ANOVA** tests are parametric tests performed directly on measured values, while **Kruskall-Wallis** tests are non-parametric tests performed on the ranks associated to the measured values.

**<u>ANOVA procedure</u>**: The test underlying the ANOVA is a Fischer's test; the statistics  $\mathbf{F}$  of the Fischer's test is a ratio of two mean squares, each of the mean squares being a sum of squares divided by the number of corresponding degrees of freedom.

In the present case, the first mean square is the mean square related to the ENSO factor ( $CM_{EN}$ ):

$$CM_{EN} = \sum_{i} (y_{i} - y_{i})^{2} / (a-1)$$

where  $\mathbf{y}_{i}$  is the mean of the observations for the modality **i** of the ENSO factor,  $\mathbf{y}_{\cdot\cdot}$  is the mean of all the observations and a is the number of modalities of the ENSO factor (here a=3); one can note that the number of degrees of freedom is equal here to the number of modalities minus 1. One can note also that the more different from each others the means of the modalities ( $\mathbf{y}_{i}$ ) are, the larger  $\mathbf{CM}_{\text{EN}}$  will be.

The second mean square used is the one associated with the error  $(CM_F)$ :

$$\mathbf{CM}_{\mathrm{E}} = \sum_{i} \sum_{i} (\mathbf{y}_{ij} - \mathbf{y}_{i})^2 / (\mathbf{N} \cdot \mathbf{a})$$

where  $y_{ij}$  is the value of the **jth** observation of the **ith** modality,  $y_{i}$ . Is the mean of the observations for the modality **i** of the ENSO factor, **a** is the number of modalities (here a=3) and **N** is the total number of observations. In the present case, this mean square contains **all** sources of varibility which are **not** associated with the ENSO factor; one can note that the more different the observations are, within a modality of the ENSO factor, the larger  $CM_E$  will be.

The Fischer's statistics is then represented by the ratio  $\mathbf{F} = \mathbf{CM}_{\mathbf{EN}} / \mathbf{CM}_{\mathbf{E}}$ . One will conclude that the means of the three modalities of the ENSO factor are statistically different from each others, if the numerical values of the ratio  $\mathbf{F}$  are large enough; the critical values of this statistics F are compiled in any good general-purpose statistical manual, such as Montgomery (1984). In conclusion, the effect of the ENSO factor is significant if the variability of the observations **between** the modalities of the factors is much **larger** than the variability of the observations within the modalities of the factors

**Kruskall-Wallis test:** In what concerns the Kruskall-Wallis' test, the method used is exactly the same (Fischer's test with the F statistics  $CM_{EN} / CM_E$ ). The only difference is that each numerical observation is submitted to a "rank transformation" where values 1 to N are given to the N ordered observations. Thus the Kruskall-Wallis test is non-parametric, and as such quite robust to large outliers and non-normal distributions; when the ANOVA and Kruskall-Wallis' tests do not draw the same conclusion, the data can present particular characteristics invalidating one of the two methods. Generally speaking, large outliers or non-normal distributions could bring different conclusions from one method to the other: large outliers induce an increased variability in the ANOVA and the associated tests rarely conclude to a significant difference. When this is the case, Kruskall-Wallis' test is the most reliable method. When only the ANOVA rejects the null hypothesis, the interpretation is more difficult and ask for more detailed analyses of the data.

The tests results are summarized by their **p**-values. A p-value corresponds to the probability in repeated sampling of obtaining a statistic greater than the value actually observed if the null hypothesis ( $H_0$ ) is true. In this case the null hypothesis is the absence of difference between levels of main effects (ENSO phases). We conclude to a significant effect of El Niño (or La Nina) phases, at the 5% significance level, if a **p-value is smaller than 0.05**.

As an **example**, one can read on Table 48, for the Darling River (mean yearly flows) that the **p**-values are respectively 0.0048 and 0.0017 for the ANOVA test and for the Kruskall-Wallis test; we thus conclude from the ANOVA and from the Kruskall-Wallis' tests that at least two of the three means are significantly different.

**Duncan test:** Since the alternative hypothese  $(H_1)$  of ANOVA and Kruskall-Wallis' tests does not produce clear conclusions, multiple comparison tests are performed to identify which means are significantly different from each other. This is a classical parametric test where the different modalities are compared two at a time; the results of Duncan's tests are summarized by letters in parentheses following numerical mean values. Two means with the same letter are not significantly different. Note that a code (AB) means A or B, so a level with this code is neither significantly different from a level with the code (A) nor from a level with the code (B).

#### Two words of **caution** about conflicting results:

Firstly, the Duncan's test is parametric and therefore is affected by outliers and non normal distributions. When Kruskall-Wallis' test and the ANOVA do not draw the same conclusion, Duncan's test should be considered with the same resevations as the ANOVA results. Secondly, when the ANOVA results are not significant (p>0.05), Duncan's test results should not be considered. Duncan's test is **liberal** and may detect differences even if the ANOVA concluded that no significant difference exists. In this case the ANOVA test is more reliable in order to insure a global significance level of 5%.

As an **example**, on Table 48, for the Avoca River (mean yearly flows), the Duncan's test concludes that **La Nina** phases have mean runoff significantly **higher** than neutral periods, while El Niño phases are not significantly different from either La Nina or neutral phases.

#### 3.4.2 Discrimination of the different phases of ENSO on a yearly basis

On Tables 48 through 52 the general results of the ANOVA and Kruskall Wallis' tests are presented for the same populations; runoff data (mean yearly, monthly maximum and monthly minimum) were tested for significance in their differences using the previously described statistical techniques: The classical parametric ANOVA, its non-parametric counterpart (Kruskall-Wallis) and the Duncan test for the equality of several mean values; with this later test, the results are presented not by a **p**-value of significance, but by adjacent letters allowing to see whether the 3 different mean values have been drawn from the same population; the (AB) code reflects a mean value that is not significantly different from either (A) or (B), which are themselves differentiated. On Tables 48 to 52, the significant differences are **shaded**.

From these tables, one can see that, for the 3 considered yearly discharge characteristics (mean, maximum and minimum monthly values), the **Oceania Pacific** area contains the most numerous rivers where the El Niño/La Nina signals have been detected; the **Far East Asia**, **South East Asia** and **Indian Subcontinent** present some **teleconnection** to the El Niño phenomenon whereas **Central Asia** presents none.

Generally, the El Niño years ("**warm**" events, with reference to the sea water temperature on the Southern Pacific Peruvian shore around Christmas, **low SOI**), when tested significantly different from other years, produce a **low hydraulicity**, e.g. less runoff than neutral, normal years and can thus be qualified as **dry**. At the opposite, La Nina years ("**cold**" events, **high SOI**) produce generally an **high hydraulicity**, e.g. more runoff than neutral, normal years and can thus be qualified as **wet**.

To this general situation, there is an interesting remarkable exception in New Zealand: The Mataura River; this river exhibits higher runoff during El Niño years that during Neutral years which are also themselves higher than during La Nina years, a situation opposite to the one prevailing for most influenced rivers within the areas under study. This makes the New Zealand situation a special case as the Motu river located at the North-East of the archipelago exhibits a significant dry El Niño signal, the Mataura river, at the South-West of the archipelago, a significant wet El Niño signal, and the 3 rivers in-between: the Ongarue, Hurunui and Ahuriri no teleconnection at all. This has to be verified by a confirmatory analysis on the finer monthly scale, but it is probably the results of some orographic effects and of differentiated local wind directions. In its Climate Impacts Database, the Greenpeace Organization states: "The effects of El Niño are being felt in New Zealand. In normal seasons between El Niño events, easterly and northeasterly winds predominate, bringing rain to the north and east of the country, and drier conditions to the west and south. During El Niño events such as the current protracted one, drought is common in the north and east of the country, while the south and west are likely to experience heavy summer rain. Until the Southern Oscillation returns to the La Nina state, this situation is likely to continue. ("Go south to duck El Niño dry period", New Zealand Farmer, 28 September 1994). One way to look at it is that the dry weather touring in the North Island would balance the wet weather in the south of the South Island. The South Island west coast is always wet anyway..."

#### 3.5 Confirmatory analysis: a monthly evaluation

In the previous analysis, the populations were discriminated on the basis of entire calendar years as shown on Table 42. This definition was very approximate and rough, as an El Niño-labelled year could contain a few non El Niño-labelled months, or conversely, a few El Niño-labelled months could be part of some non El Niño-labelled years.

In this confirmatory analysis, 36 monthly populations were defined more accurately, using the smoothed SOI values given in on Table 42 to classify the months; the mean values of each monthly sub-population are tested for significance (p-value < 0.05) in differences with the ensemble mean value for the month. Global mean values for all the months belonging to the 3 studied sub-populations were also tested.

Tables 53 to 57 present these statistical results for El Niño/La Nina/Neutral months, e.g., for each month of each sub-population and for the ensemble set, the mean values, the standard deviations, the numbers of observations used to define the subpopulation and the p-value related to the equality of the means of the sub-populations. On the tables, monthly means that are significantly different from the general mean appear in **shaded areas**; the monthly seasonal evolution of the 3 types of years can also be easily compared either for their relative magnitudes or for eventual systematic shifts or lags in the occurrence of high/low events (floods/ droughts). Most of the signals can be found in the Oceania-Pacific area and in the Indian Subcontinent; in these case one should note the **very large internal variability** of the monthly values, as quantified by the **standard deviation**: As an example, on table 53d, one can see that, for the Motu River, the monthly discharge for August si significantly different during the La Nina phase (mean value of 138 m<sup>3</sup>/s with a standard deviation of 47.7 m<sup>3</sup>/s) from the two other phases: El Niño (mean value of 65 m<sup>3</sup>/s and standard deviation of 18.6 m<sup>3</sup>/s) and Neutral (mean value 87 m<sup>3</sup>/s) with a standard deviation of 62.9 m<sup>3</sup>/s). This large natural statistical variability is limiting, at this stage, the practical interest of categorical forecasting.

If one defines as **influenced** each river station for which **at least one** monthly runoff value is significantly different during El Niño/La Nina labelled events from its mean value for all years; then, the Table 58 presents a synthesis by region of the strength of the **teleconnection** between the ENSO phenomenon and runoff; it shows the number of stations related to the total number of stations in the area that are influenced by the different phases of the event.

The Figure 8 maps the geographical distribution of the stations teleconnected to the phenomenon and shows which phase of the ENSO relates to this signal.

#### 3.6 Synthesis

The study shows that, in most areas of the Asia-Pacific region, a strong El-Niño-related signal can be found in the historical river runoff series stored at the Global Runoff Data Centre (GRDC). This signal is particularly strong in the Australian rivers whose regime in known to be highly contrasted. The Indian Subcontinent is also globally affected in its monsoon regime. On most stations, this effect consists mainly in an reduction/amplification of the seasonal fluctuations for El Niño/La Nina-labelled events, respectively.

In most instances in this part of the world, the **El Niño** phase of the ENSO is a relatively **dry phase** and the **La Nina** phase a relatively **wet phase** compared to the unlabelled normal phases, but there are some exceptions. At the working interval of one month, **no systematic shift** ( at the

scale of a subregional area) was detected in the normal occurrence timing of either high or low flows. During El Niño/La Nina episodes, the amplitude of the **high flows** (floods) can significantly be modified, whereas **low flows** are much more stable, probably because of the **buffering** capacity and of the **delaying** effect of the groundwater reserve contribution to runoff.

In this study, the **SOI** was used to **categorize** the different events; despite numerous attempts, it was not possible to establish significant linear regressive relationships between the successive values of the SOI, either **synchronous or lagged**, and the measured runoffs, that could be used to quantitatively forecast the runoff, given the actual and past SOI values; some signicant correlations (representing up to 50% of the total variance) were found, but they related to stations of the Oceania-Pacific area where the intrinsic variability (represented by the ratio of the standard deviation to the mean value) was very high, giving way to **very wide confidence intervals** around the linear model and by the way limiting its practical forecasting power, thus the amplitude of the discharge anomalies during an ENSO phase can not be deduced **in a simple way** from the successive values of the SOI; nevertheless, the **simple belonging** to a phase allows, in some cases, to make discriminated forecasts of the expected amplitude of runoffs to come; but the confidence intervals around these distinct expectations are generally (and regretfully) quite wide.

In Figure 8, one can see that most rivers of Australia, of the Indian subcontinent and surprisingly enough some rivers of the Northern East Siberia seem to be affected mainly by the **La Nina** phase of the ENSO phenomenon, whereas rivers in Eastern Australia, Japan, Taiwan and Central China seem more responsive to the **El Niño** phase. New Zealand exhibits a very mixed response, probably as the result of local orographic effects. A line joining southern Japan to the Caucasus can be seen as the **northern** limit of the ENSO influence.

#### 3.7 Discussion and direction for further work

In the previous section, we have described our unsuccessful attempt to try to take advantage of the real time availability of the SOI to relate with linear lagged models the monthly discharge Q to the actual and past values of the SOI; such a linear model can be written:

$$Q_m = a \cdot SOI_m + b \cdot SOI_{m-1} + c \cdot SOI_{m-2} + ... + \varepsilon$$

where **m** is a monthly time index and  $\varepsilon$  the remaining error; in this scheme, the relatively large magnitude of unexplained variance  $\varepsilon^2$  is responsible for the fact that such a model can be of little practical forecasting use, even if some correlations between Q and SOI are significantly different from zero, the confidence intervals around the regression line being **widely apart**. There is often a significant correlation coefficient between Q<sub>m</sub> and **SOI**<sub>m</sub>, but this correlation explains at most half of the variability, which is often very large.

An other approach would be to suppose that the discharges are **also** available almost in **real time**, then instead of using the lagged regression analysis technique with the sole SOI values as regressors, it would be possible to use **for each series** the classical **Box & Jenkins** technique, with first the identification of their **internal structures**, and then the estimation of the **optimal transfer function** between them, in order to devise a **one-step-ahead** forecasting model:

$$Q_{m} = \Theta (SOI_{m}, SOI_{m-1}, SOI_{m-2}, ..., Q_{m-1}, Q_{m-2}, Q_{m-3}, ...) + \varepsilon$$

This type of analysis, which is time-consuming, can not be performed as a batch treatment, but must be realized for each individual series at a time; as such it should not be attempted on the whole GRDC data base, but preferably on some problematic river basins of interest. Should this type of model model prove to be a good predictor for the monthly runoff (i.e. explaining most of the variance), then the working interval could be widened to two or three months and tested for the remaining (reduced) forecasting power in the resulting model; Such models with wider intervals would lead of course to increased **operational** benefits as they could allow to generate some needed lag-time between the forecast and the event itself for mitigation measures to be taken.

If the Box & Jenkins **monthly** model were proven to be unsatisfactory (too much residual variance), then there would be no need to pursue in this direction: Some other type of external information would be needed to try to build a better forecasting model; let's remind here that **no** information related to the precipitations, neither in amount nor in timing, was introduced in this study. Such information, possibly compounded as a regional precipitation index (PI), could be used in a regression relating the actual discharges to the past values of the SOI and of the PI:

$$Q_m = \Theta(SOI_m, SOI_{m-1}, SOI_{m-2}, \dots, PI_{m-1}, PI_{m-2}, PI_{m-3}, \dots) + \varepsilon$$

In addition, the precipitation index provides some lag-time before the delivery of the actual runoff at the gauging station (the concentration time of the watershed).

#### 3.8 Operational conclusion

From the point of view of operational, the goal remains to be able to forecast months ahead the occurrence of abnormal high or low flows (floods/droughts) in order to mitigate the extent of possible damages. The previous results could be exploited as part of an agricultural or flood warning system, taking advantage of the fact that the development of the different phases of the ENSO is actually forecasted months ahead and with a good accuracy by the climatologists.

From a practical and **operational** point of view, Tables 53 to 57 could be used to compute, in the cases where differences are significant (shaded cells), the ratios between the expected monthly runoffs during El Niño and La Nina events and the global mean monthly values; As an example, one can see on Table 53a, for the Darling River which is highly influenced by the ENSO, that during the El Niño phase the lowest monthly runoff occurs in september (1575  $m^3/s$ ) whereas, for the same month, the expected runoffs are respectively 23040  $m^3/s$  and 12425  $m^3/s$  for the La Nina and the neutral phases. Thus one might think that it could be wise, in the case of an advertised El Niño phase to come, to store some water in reservoirs or dams during the high flow period, in order to be able to release it later to maintain a given level to the river for transportation purposes or to ensure more irrigation or other urban or industrial uses that could have been possible with the sole natural water supply.

Conversely, for the same river, the high flows occur, during the La Nina phase in August (81326  $m^3$ /s ) where, during the same month, only 8764  $m^3$ /s and 9068  $m^3$ /s are expected respectively during El Niño and neutral phases. In this situation, getting rid of some water stored in dams and reservoirs as soon as a La Nina phase to come is advertised seems to be a good strategy in order to make room for the expected high flow and minimize the damage related to flooding.

Even if the variability is quite large and some of the differences in runoff not quite statistically significant, the general direction of the mitigation strategies stays valid.

One should note that the values reported in this report are not related to the strength of the

actual SOI index, but to the **sole** belonging to a specific phase of the ENSO; as the forecasting power of the models relating the runoff to the SOI and other explaining factors will improve, the mitigating strategies shall be able to be refined and fine tuned.

## 3.9 References of the second section

- Chiew, F.H.S., T.C. Piechota, J.A. Dracup and T.A. McMahon (1998) El Niño/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. Journ. Hydrol. (204):138-149.
- Kawamura, A., A.I. McKerchar, R.H. Spigel and K. Jinno (1998) Chaotic characteristics of the Southern Oscillation Index times series. Journ. Hydrol. (204):168-181.
- Montgomery, D.C. (1984) Design and analysis of experiments. 2nd Ed. John Wiley and sons, New York, 538p.
- NRC (1996) Learning to predict climate variations associated with El Niño and the Southern Oscillation. National Reserch Council, 171p. Nat. Acad. Press, Washington, D.C.
- Ropelewski, C. F. and P.D. Jones (1987) An extension of the Tahiti-Darwin Southern Oscillation index, Mon. Wea. Rev., 115, 2161-2165.
- Ropelewski, C.F., Halpert, M.S. and V.E. Kouski (1995) Southern Oscillation-precipitation relationships: Opportunities for improved predictions. Proc. Inter. Sci. Conf. On TOGA. Melbourne 2-7 Apr. WCRP-91-WMO/TD Rep. No 717, p.865-869.
- Shukla, J. and D.A. Paolino (1983) The Southern Oscillation and long range forecasting of the summer monsoon rainfall over India. Mon. Weather Rev. (111):1830-1837.
- Troup, A.J., (1965) The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91 (390),490-506.
- Wolter, K. and M.S. Timlin, (1997) A multivariate ENSO index in COADS. (submitted)

## **4** Conclusions

The database of world river runoffs maintained at the Global Runoff Data Centre (GRDC) was exploited to address two questions pertaining to selected rivers of the Asia-Pacific region:

The first one dealt with the detection and classification of changes over the duration of their historical records, in the mean yearly runoffs of rivers. It has been found that most of the changes occurred during the **sixties** and the **seventies**, a period where most of the large reservoirs were completed.

The second one was exploring the **teleconnection** between the ENSO phenomenon and the recorded historical runoff, in order to assess the magnitude and timing of the impact on river discharges as well as the geographical extent of the influence of the ENSO-generated signal. It was found that its influence exceeded largely the south Pacific area and that all studied areas were more or less affected with the notable exception of the most continental part of Asia.

In both cases, the availability of a large runoff database allowed to perform global analysis, downplaying local singularities whose explanation would have demanded a detailed (and lacking) knowledge of the historical background of each river and water basin.

#### **5** Acknowledgment

The author wishes to express his gratitude to the collaborators of the **Global Runoff Data Centre** - Koblenz - Germany, for their warm reception and traditional hospitality, in particular to Dr. W. Grabs, its director, and to Mr. M. Hils. Many thanks also to Mr. T. DeCouet who restructured the GRDC database to adapt its format to the statistical softwares used. Also are to be heartfully thanked Dr. D. Kraemer and Dr. A. Askew, of the Hydrology and Water Resources Department of the World Meteorological Organization - Geneva - Switzerland as well as Professor Z. W. Kundzewicz, for their encouragement and support.

This visit at the GRDC was part of a sabbatical leave of absence from the water research center INRS-EAU, University of Québec, Canada, and was made possible by the financial support of the **World Meteorological Organization** (WMO) - Geneva - Switzerland.

#### Table 1:

#### Characteristics of the selected Rivers of the Oceania-Pacific area,

| GRDC    | River              | Station                | Country | Latitude | Longitude | Watershed | Begin | End  | % missing | Duration |
|---------|--------------------|------------------------|---------|----------|-----------|-----------|-------|------|-----------|----------|
| number  |                    |                        | code    |          |           | area      | year  | year | data      | (years)  |
|         |                    |                        |         |          |           |           |       |      |           |          |
| 5204255 | Darling River      | Bourke Town            | AU      | 3009S    | 14594E    | 386000    | 1944  | 1993 | 2.9       | 49       |
| 5101301 | Fitzroy            | The Gap                | AU      | 2310S    | 15010E    | 135860    | 1965  | 1995 | 2.5       | 30       |
| 5708145 | Daly               | Mount Nancar           | AU      | 1383S    | 13241E    | 47000     | 1970  | 1995 | 3.4       | 25       |
| 5101161 | Herbert River      | Ingham                 | AU      | 1863S    | 14613E    | 8805      | 1916  | 1996 | 1.4       | 80       |
| 5708185 | Mary River (1)     | Mount Bundy            | AU      | 12928    | 13165E    | 5700      | 1957  | 1995 | 0.6       | 38       |
| 5101381 | Mary River (2)     | Miva                   | AU      | 2595S    | 15250E    | 4830      | 1910  | 1995 | 0         | 85       |
| 5302242 | Mitchell River     | Glenaladale            | AU      | 37755    | 14737E    | 3900      | 1938  | 1987 | 2.4       | 49       |
| 5304080 | Avoca River        | Coonooer               | AU      | 3644S    | 14330E    | 2670      | 1890  | 1993 | 1.3       | 103      |
| 5803600 | Huon River         | above Frying Pan Creek | AU      | 4304S    | 14684E    | 2097      | 1949  | 1994 | 0.9       | 45       |
| 5204105 | Murrumbidgee River | Mittagang Crossing     | AU      | 3618S    | 14909E    | 1891      | 1927  | 1993 | 1,1       | 66       |
| 5202040 | Nymboida River     | Nymboida               | AU      | 2998S    | 15272E    | 1660      | 1909  | 1993 | 2.6       | 84       |
| 5606145 | Serpentine River   | Serpentine Falls       | AU      | 3237S    | 11601E    | 769       | 1911  | 1992 | 0.9       | 81       |
| 5762050 | Tipindje           | Ouen-Kout              | NC      | 2078S    | 16499E    | 247       | 1956  | 1984 | 1.4       | 28       |
| 5762700 | Riviere Des Lacs   | Goulet                 | NC      | 2223S    | 16685E    | 69        | 1958  | 1984 | 0         | 26       |
| 5868300 | Mataura            | Gore Hbr               | NZ      | 4610S    | 16895E    | 3465      | 1961  | 1993 | 0         | 32       |
| 5864150 | Motu               | Houpoto                | NZ      | 3786S    | 17765E    | 1393      | 1958  | 1990 | 1.7       | 32       |
| 5865550 | Ongarue            | Taringamutu            | NZ      | 3886S    | 17524E    | 1075      | 1963  | 1994 | 0         | 31       |
| 5867500 | Hurunui            | Mandamus               | NZ      | 42798    | 17255E    | 1070      | 1957  | 1990 | 4.2       | 33       |
| 5868200 | Ahuriri            | Sth Diadem             | NZ      | 4447S    | 16973E    | 557       | 1964  | 1994 | 0         | 30       |

Table 2:

#### Characteristics of the selected Rivers of the Far East Asia area.

| GRDC    | River                 | Station         | Country | Latitude | Longitude | Watershed | Begin | End  | % missing | Duration |
|---------|-----------------------|-----------------|---------|----------|-----------|-----------|-------|------|-----------|----------|
| number  |                       |                 | code    |          | U U       | area      | vear  | vear | data      | (vears)  |
|         |                       |                 |         |          |           |           |       |      |           |          |
| 2588550 | Tone                  | Kurihashi       | JP      | 3613N    | 13970E    | 8588      | 1938  | 1986 | 6.1       | 48       |
| 2587100 | Ishikari              | Ishikari-Ohashi | ЛР      | 4312N    | 14153E    | 12697     | 1954  | 1986 | 6.3       | 32       |
| 2589500 | Shinano               | Ojiya           | ЛР      | 3730N    | 13880E    | 9719      | 1965  | 1988 | 4.5       | 23       |
| 2588200 | Yodo                  | Hirakata        | ЛР      | 3480N    | 13563E    | 7281      | 1965  | 1988 | 4.2       | 23       |
| 2590100 | Chikugo               | Senoshita       | ЛР      | 3353N    | 13080E    | 2315      | 1965  | 1988 | 4.2       | 23       |
| 2181800 | Changjiang            | Hankou          | СІ      | 3058N    | 11428E    | 1488036   | 1865  | 1986 | 1.2       | 121      |
| 2106500 | Songhuajiang          | Haerbin         | CI      | 4577N    | 12658E    | 391000    | 1898  | 1987 | 4.4       | 89       |
| 2178300 | Yongding              | Guanting        | CI      | 4023N    | 11560E    | 42500     | 1925  | 1988 | 6.6       | 63       |
| 2180500 | Jinghe                | Zhangjiashan    | СІ      | 3463N    | 10860E    | 43200     | 1933  | 1986 | 7.6       | 53       |
| 2181400 | Wujiang               | Gongtan         | СІ      | 2890N    | 10835E    | 58300     | 1939  | 1982 | 9.1       | 43       |
| 2180800 | Huanghe(Yellow River) | Huayuankou      | СІ      | 3492N    | 11365E    | 730036    | 1947  | 1988 | 5.2       | 41       |
| 2186900 | Beijiang              | Hengshi         | CI      | 2385N    | 11327E    | 34013     | 1954  | 1987 | 1         | 33       |
| 2186950 | Dongjiang             | Boluo           | СІ      | 2317N    | 11430E    | 25325     | 1960  | 1987 | 0         | 27       |
| 2998100 | Yana                  | Dzanghky        | RS      | 6967N    | 13533E    | 216000    | 1938  | 1984 | 1.8       | 46       |
| 2901300 | Penzhina              | Kamenskoe       | RS      | 6242N    | 16603E    | 71600     | 1957  | 1984 | 3.6       | 27       |
| 2998400 | Indigirka             | Vorontsovo      | RS      | 6958N    | 14735E    | 305000    | 1937  | 1994 | 1         | 57       |
| 2903420 | Lena                  | Kusur           | RS      | 7070N    | 12765E    | 2430000   | 1935  | 1994 | 0         | 59       |
| 2906200 | Shilka                | Sretensk        | RS      | 5225N    | 11772E    | 175000    | 1897  | 1985 | 1.9       | 88       |
| 2902800 | Kamchatka             | Kluchi          | RS      | 5643N    | 16105E    | 45600     | 1931  | 1984 | 0.8       | 53       |
| 2906700 | Amur (1)              | Khabarovsk      | RS      | 4843N    | 13505E    | 1630000   | 1897  | 1985 | 0.9       | 88       |
| 2906900 | Amur (2)              | Komsomolsk      | RS      | 5063N    | 13712E    | 1730000   | 1933  | 1990 | 0         | 57       |
| 2385760 | Li-Wu                 | Lu-Shui         | TW      | 2418N    | 12150E    | 435       | 1960  | 1993 | 0         | 33       |
| 2385500 | Yufeng                | Dahan           | TW      | 2465N    | 12128E    | 335       | 1964  | 1989 | 0         | 25       |
| 2385400 | Sandimen              | Ailiao          | TW      | 2270N    | 12063E    | 408       | 1964  | 1989 | 0         | 25       |
| 2385200 | Xinfadaqiao           | Laonong         | TW      | 2305N    | 12065E    | 812       | 1964  | 1989 | 0         | 25       |

|  | Table 3: | Characteristics of the selected Rivers of the South-East Asia a | ea. |
|--|----------|-----------------------------------------------------------------|-----|
|--|----------|-----------------------------------------------------------------|-----|

| GRDC    | River      | Station           | Country | Latitude | Longitude | Watershed | Begin | End  | % missing | Duration |
|---------|------------|-------------------|---------|----------|-----------|-----------|-------|------|-----------|----------|
| number  |            |                   | code    |          |           | area      | year  | year | data      | (years)  |
|         |            |                   |         |          |           |           |       |      |           |          |
| 5654500 | Pampanga   | San Agustin       | PH      | 1517N    | 12078E    | 6487      | 1946  | 1974 | 5.7       | 28       |
| 5654100 | Bonga      | Bangay            | РН      | 1808N    | 12070E    | 534       | 1947  | 1976 | 6.1       | 29       |
| 5223100 | Kelantan   | Guillemard Bridge | MS      | 577N     | 10215E    | 11900     | 1950  | 1986 | 7.7       | 37       |
| 2969100 | Mekong (1) | Mukdahan          | TH      | 1653N    | 10473E    | 391000    | 1925  | 1991 | 0.4       | 66       |
| 2969150 | Nam Chi    | Yasothon          | TH      | 1578N    | 10415E    | 43100     | 1954  | 1991 | 0.6       | 37       |
| 2969200 | Nam Mun    | Ubon              | TH      | 1522N    | 10487E    | 104000    | 1956  | 1991 | 1.1       | 35       |
| 2964080 | Nan        | Sirikit Dam       | TH      | 1777N    | 10055E    | 13300     | 1956  | 1988 | 2.9       | 32       |
| 2969010 | Mekong (2) | Chiang Saen       | TH      | 2027N    | 10010E    | 189000    | 1961  | 1991 | 1         | 30       |
| 2969095 | Mekong (3) | Nakhon Phanom     | TH      | 1740N    | 10480E    | 373000    | 1962  | 1991 | 3.3       | 29       |

# Table 4: Characteristics of the selected Rivers of the Indian subcontinent area

| GRDC    | River            | Station          | Country | Latitude | Longitude | Watershed | Begin | End  | % missing | Duration |
|---------|------------------|------------------|---------|----------|-----------|-----------|-------|------|-----------|----------|
| number  |                  |                  | code    |          |           | area      | year  | year | data      | (years)  |
|         |                  |                  |         |          |           |           |       |      |           |          |
| 2357500 | Mahaweli Ganga   | Peradeniya       | SB      | 727N     | 8058E     | 1189      | 1950  | 1984 | 2.8       | 34       |
| 2357750 | Gin Ganga        | Agaliya          | SB      | 618N     | 8020E     | 681       | 1928  | 1989 | 1.7       | 61       |
| 2548400 | Karnali River    | Chisapani        | NE      | 2864N    | 8129E     | 42890     | 1962  | 1993 | 0         | 31       |
| 2549300 | Kali Gandaki (1) | Setibeni         | NE      | 2801N    | 8360E     | 6630      | 1964  | 1993 | 0.3       | 29       |
| 2549350 | Kali Gandaki (2) | Kotagaon Shringe | NE      | 2775N    | 8435E     | 11400     | 1964  | 1985 | 4.2       | 21       |
| 2550500 | Tamur River      | Mulghat          | NE      | 2693N    | 8733E     | 5640      | 1965  | 1986 | 0         | 21       |
| 2646200 | Ganges R. (1)    | Harlinge Bridge  | BW      | 2408N    | 8903E     | 846300    | 1934  | 1989 | 2.1       | 55       |
| 2846800 | Ganges R.(2)     | Farakka          | IN      | 2500N    | 8792E     | 935000    | 1949  | 1985 | 0         | 36       |
|         | Sapt Kosi        | Barashetra       | NE      |          | 1         |           | 1947  | 1978 | 0         | 31       |
| 2856900 | Godavari         | Polavaram        | IN      | 1692N    | 8178E     | 299320    | 1902  | 1979 | 7         | 77       |
| 2854300 | Krishna          | Vijayawada       | IN      | 1652N    | 8062E     | 251355    | 1901  | 1979 | 6.3       | 78       |
| 2853500 | Narmada          | Jamtara          | IN      | 2302N    | 7993E     | 16576     | 1949  | 1974 | 0.3       | 25       |

Table 5:

#### Characteristics of the selected Rivers of the Central Asia area.

| GRDC    | River     | Station      | Country | Latitude | Longitude | Watershed | Begin | End  | % missing | Duration |
|---------|-----------|--------------|---------|----------|-----------|-----------|-------|------|-----------|----------|
| number  |           | ,            | code    |          |           | агеа      | year  | year | data      | (years)  |
|         |           |              |         |          |           |           |       |      |           |          |
| 2917100 | Amu-Darya | Chatly       | UZ      | 4228N    | 5970E     | 450000    | 1931  | 1973 | 2.1       | 42       |
| 2917450 | Zaravchan | Dupuli       | TA      | 3938N    | 6777E     | 10200     | 1932  | 1994 | 1.3       | 62       |
| 2917700 | Gunt      | Khorog       | TA      | 3753N    | 7152E     | 13700     | 1940  | 1985 | 0         | 45       |
| 2917900 | Vakhsh    | Tutkaul      | TA      | 3833N    | 6930E     | 31200     | 1932  | 1967 | 1.6       | 35       |
| 2910470 | Biya      | Biysk        | RS      | 5252N    | 8527E     | 36900     | 1895  | 1985 | 0         | 90       |
| 2912600 | ОЪ        | Salekhard    | RS      | 6657N    | 6653E     | 2949998   | 1930  | 1994 | 0         | 64       |
| 2910490 | Tom (1)   | Novokuznetsk | RS      | 5375N    | 8710E     | 29800     | 1894  | 1985 | 0         | 91       |
| 2910300 | Tom (2)   | Tomsk        | RS      | 5658N    | 8487E     | 57000     | 1965  | 1990 | 0         | 25       |
| 2912400 | Tura      | Tiumen       | RS      | 5715N    | 6553E     | 58500     | 1896  | 1985 | 0         | 89       |
| 2909150 | Yenisei   | Igarka       | RS      | 6748N    | 8650E     | 2440000   | 1936  | 1995 | 0         | 59       |
| 2916200 | Syr-Darya | Tyumen-Aryk  | КZ      | 4405N    | 6705E     | 219000    | 1930  | 1984 | 7         | 54       |
| 2919200 | Ural      | Kushum       | КZ      | 5085N    | 5128E     | 190000    | 1915  | 1984 | 4.3       | 69       |
| 2916850 | Naryn     | Uch-Kurgan   | KG      | 4117N    | 7210E     | 58400     | 1933  | 1990 | 0         | 57       |

Table 6

Table 7

Segmentations of the mean yearly discharges ( Oceania-Pacific area).

| GRDC    | River              | Begin | End  | 1st Segment |       | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|--------------------|-------|------|-------------|-------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                    | уеаг  | year | mean        | s.d.  | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |                    |       |      |             |       |       |      |             |      |       |      |                    |      |
| 5204255 | Darling River      | 1944  | 1993 | 11000       | 14500 |       |      |             |      |       |      |                    |      |
| 5101301 | Fitzroy            | 1965  | 1995 | 165         | 174   |       |      |             |      |       |      |                    |      |
| 5708145 | Daly               | 1970  | 1995 | 211         | 160   |       |      |             |      |       |      |                    |      |
| 5101161 | Herbert River      | 1916  | 1973 | 107         | 58    | 1974  | 1977 | 217         | 112  | 1978  | 1996 | 79                 | 57   |
| 5708185 | Mary River (1)     | 1957  | 1995 | 49          | 30    |       |      |             |      |       |      |                    |      |
| 5101381 | Mary River (2)     | 1910  | 1995 | 38          | 33    |       |      |             |      |       |      |                    |      |
| 5302242 | Mitchell River     | 1938  | 1987 | 28          | 15    |       |      |             |      |       |      |                    | 1    |
| 5304080 | Avoca River        | 1890  | 1894 | 317         | 167   | 1895  | 1987 | 6.4         | 6.9  | 1988  | 1993 | 440                | 241  |
| 5803600 | Huon River         | 1949  | 1994 | 84          | 18    |       |      |             |      |       |      |                    |      |
| 5204105 | Murrumbidgee River | 1927  | 1949 | 976         | 450   | 1950  | 1955 | 1700        | 828  | 1957  | 1993 | 503                | 356  |
| 5202040 | Nymboida River     | 1909  | 1993 | 2140        | 1290  |       |      |             |      |       |      |                    |      |
| 5606145 | Serpentine River   | 1911  | 1970 | 6.3         | 3.8   | 1971  | 1992 | 0.17        | 0.46 |       |      |                    |      |
| 5762050 | Tipindje           | 1956  | 1984 | 9.6         | 6.9   |       |      |             |      |       |      |                    |      |
| 5762700 | Riviere Des Lacs   | 1958  | 1983 | 4.7         | 1.5   |       |      |             |      |       |      |                    |      |
| 5868300 | Mataura            | 1961  | 1993 | 65          | 18    |       |      |             |      |       |      |                    |      |
| 5864150 | Motu               | 1958  | 1990 | 90          | 20    |       |      |             |      |       |      |                    |      |
| 5865550 | Ongarue            | 1963  | 1994 | 33          | 61    |       |      |             |      |       |      |                    |      |
| 5867500 | Hurunui            | 1957  | 1990 | 51          | 11    |       |      |             |      |       |      |                    |      |
| 5868200 | Ahuriri            | 1964  | 1994 | 23          | 4.3   |       |      |             |      |       |      |                    |      |

Segmentations of the maximum monthly discharges ( Oceania-Pacific area).

| GRDC    | River              | Begin | End  | 1st Segment |       | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|--------------------|-------|------|-------------|-------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                    | year  | year | mean        | s.d.  | year  | уеаг | mean        | s.d. | year  | уеаг | mean               | s.d. |
|         |                    |       |      |             |       |       |      |             |      |       |      |                    |      |
| 5204255 | Darling River      | 1944  | 1993 | 43400       | 62100 |       |      |             |      |       |      |                    |      |
| 5101301 | Fitzroy            | 1965  | 1995 | 1170        | 1400  |       |      |             |      |       |      |                    |      |
| 5708145 | Daly               | 1970  | 1995 | 1340        | 1100  |       |      |             |      |       |      |                    |      |
| 5101161 | Herbert River      | 1916  | 1996 | 536         | 360   |       |      |             |      |       |      |                    |      |
| 5708185 | Mary River (1)     | 1957  | 1995 | 348         | 246   |       |      |             | 1    |       |      |                    |      |
| 5101381 | Mary River (2)     | 1910  | 1995 | 216         | 234   |       |      |             | 1    |       |      |                    |      |
| 5302242 | Mitchell River     | 1938  | 1987 | 83          | 45    |       |      |             | 1    |       |      |                    |      |
| 5304080 | Avoca River        | 1890  | 1894 | 1240        | 594   | 1895  | 1987 | 32          | 35   | 1988  | 1993 | 2300               | 1100 |
| 5803600 | Huon River         | 1949  | 1994 | 193         | 60    |       |      |             |      |       |      |                    |      |
| 5204105 | Murrumbidgee River | 1927  | 1949 | 3130        | 1630  | 1950  | 1956 | 5790        | 3250 | 1957  | 1993 | 1650               | 1280 |
| 5202040 | Nymboida River     | 1909  | 1993 | 7660        | 5060  |       |      |             |      |       |      |                    |      |
| 5606145 | Serpentine River   | 1911  | 1970 | 25.2        | 17.4  | 1971  | 1992 | i           | 2.5  |       |      |                    |      |
| 5762050 | Tipindje           | 1956  | 1984 | 43          | 31    |       |      |             |      |       |      |                    |      |
| 5762700 | Riviere Des Lacs   | 1958  | 1983 | 15          | 5.6   |       |      |             |      |       |      |                    |      |
| 5868300 | Mataura            | 1961  | 1993 | 129         | 47    |       |      |             |      | l     |      |                    |      |
| 5864150 | Motu               | 1958  | 1990 | 190         | 45    |       |      |             |      | i     |      |                    |      |
| 5865550 | Ongarue            | 1963  | 1994 | 74          | 21    |       |      |             |      | ĺ     |      |                    |      |
| 5867500 | Hurunui            | 1957  | 1990 | 104         | 32    |       |      |             |      |       |      |                    |      |
| 5868200 | Ahuriri            | 1964  | 1994 | 47          | 12    |       |      |             |      |       |      |                    |      |

Table 8

Segmentations of the minimum monthly discharges (Oceania-Pacific area).

| GRDC    | River              | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|--------------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                    | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |                    |       |      |             |      |       |      |             |      |       |      |                    | _    |
| 5204255 | Darling River      | 1944  | 1993 | 898         | 1130 |       |      |             |      |       |      |                    |      |
| 5101301 | Fitzroy            | 1965  | 1995 | 1.8         | 2.9  |       |      |             |      |       |      |                    | -    |
| 5708145 | Daly               | 1970  | 1973 | 8           | 1.9  | 1974  | 1995 | 18.5        | 5    |       |      |                    |      |
| 5101161 | Herbert River      | 1916  | 1949 | 5.1         | 4.5  | 1950  | 1950 | 27          | 0    | 1951  | 1996 | 5.2                | 4    |
| 5708185 | Mary River (1)     | 1957  | 1995 | 0.02        | 0.07 |       |      |             |      |       |      |                    |      |
| 5101381 | Mary River (2)     | 1910  | 1995 | 2           | 2.2  |       |      |             |      |       |      |                    |      |
| 5302242 | Mitchell River     | 1938  | 1956 | 3.2         | 2.4  | 1957  | 1987 | 1.7         | 1.4  |       |      |                    |      |
| 5304080 | Avoca River        | 1890  | 1894 | 3.2         | 4.5  | 1895  | 1987 | 0.02        | 0.14 | 1988  | 1993 | 6.7                | 3.2  |
| 5803600 | Huon River         | 1949  | 1949 | 42          | 0    | 1950  | 1994 | 17.8        | 8.3  |       |      |                    |      |
| 5204105 | Murrumbidgee River | 1927  | 1949 | 92          | 79   | 1950  | 1959 | 162         | 51   | 1960  | 1993 | 57                 | 32   |
| 5202040 | Nymboida River     | 1909  | 1993 | 415         | 303  |       |      |             |      |       |      |                    |      |
| 5606145 | Serpentine River   | 1911  | 1964 | 0           | 0    | 1965  | 1969 | 0.8         | 0.4  | 1970  | 1992 | 0                  | 0    |
| 5762050 | Tipindje           | 1956  | 1984 | 0.4         | 0.7  |       |      |             |      |       |      |                    |      |
| 5762700 | Riviere Des Lacs   | 1958  | 1983 | 0.2         | 0.5  |       |      |             |      |       |      |                    |      |
| 5868300 | Mataura            | 1961  | 1993 | 27          | 11   |       |      |             |      |       |      |                    |      |
| 5864150 | Motu               | 1958  | 1990 | 25          | 11   |       |      |             |      | i     |      |                    | 1    |
| 5865550 | Ongarue            | 1963  | 1994 | 11          | 4.1  |       |      |             |      |       |      |                    | (    |
| 5867500 | Hurunui            | 1957  | 1990 | 23          | 7.2  |       |      |             | 1    |       |      |                    | 1    |
| 5868200 | Ahumri             | 1964  | 1994 | 11          | 2.7  |       |      |             |      |       |      |                    |      |

Table 9

Segmentations of the mean yearly discharges ( Far East Asia area).

| GRDC    | River                 | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment | -    | Begin | End  | 3rd Segment |      |
|---------|-----------------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|-------------|------|
| number  |                       | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean        | s.d. |
|         |                       |       |      |             |      |       |      |             |      |       |      |             |      |
| 2588550 | Tone                  | 1938  | 1960 | 293         | 67   | 1961  | 1985 | 214         | 47   |       |      |             |      |
| 2587100 | Ishikan               | 1954  | 1985 | 467         | 97   |       |      |             |      |       |      |             |      |
| 2589500 | Shinano               | 1965  | 1966 | 903         | 294  | 1967  | 1988 | 496         | 70   |       |      |             |      |
| 2588200 | Yodo                  | 1965  | 1966 | 493         | 228  | 1967  | 1988 | 251         | 51   |       |      |             |      |
| 2590100 | Chikugo               | 1965  | 1988 | 119         | 45   |       |      |             |      |       |      |             |      |
| 2181800 | Changjiang            | 1865  | 1953 | 23800       | 3280 | 1954  | 1985 | 22000       | 2430 |       |      |             |      |
| 2106500 | Songhuajiang          | 1898  | 1927 | 895         | 403  | 1928  | 1987 | 1360        | 404  |       |      |             |      |
| 2178300 | Yongding              | 1925  | 1948 | 39          | 16   | 1949  | 1962 | 58          | 15   | 1963  | 1988 | 25          | 13   |
| 2180500 | Jinghe                | 1933  | 1986 | 61          | 22   |       |      |             |      |       |      |             |      |
| 2181400 | Wujiang               | 1939  | 1982 | 1140        | 213  |       |      |             |      |       |      |             |      |
| 2180800 | Huanghe(Yellow River) | 1949  | 1968 | 16200       | 453  | 1969  | 1988 | 12300       | 336  |       |      |             |      |
| 2186900 | Beijiang              | 1954  | 1987 | 1080        | 298  |       |      |             |      |       |      |             |      |
| 2186950 | Dongjiang             | 1960  | 1987 | 755         | 188  |       |      |             |      |       |      |             |      |
| 2998100 | Yana                  | 1938  | 1984 | 918         | 181  |       |      |             |      |       |      |             |      |
| 2901300 | Penzhina              | 1957  | 1984 | 695         | 160  |       |      |             |      |       |      |             |      |
| 2998400 | Indigurka             | 1937  | 1994 | 1590        | 322  |       |      |             |      |       |      |             | Î    |
| 2903420 | Lena                  | 1935  | 1994 | 16600       | 2010 |       |      |             |      |       |      |             |      |
| 2906200 | Shilka                | 1898  | 1982 | 391         | 135  | 1983  | 1985 | 710         | 100  |       |      |             |      |
| 2902800 | Kamchatka             | 1931  | 1959 | 733         | 74   | 1960  | 1984 | 831         | 67   |       |      |             |      |
| 2906700 | Amur (1)              | 1897  | 1954 | 8230        | 1850 | 1955  | 1963 | 10800       | 1040 | 1964  | 1985 | 7700        | 1590 |
| 2906900 | Amur (2)              | 1933  | 1990 | 9870        | 1960 |       |      |             |      |       |      |             |      |
| 2385760 | Li-Wu                 | 1960  | 1993 | 3280        | 977  |       |      |             |      |       |      |             |      |
| 2385500 | Yufeng                | 1964  | 1967 | 1130        | 268  | 1968  | 1989 | 1810        | 411  |       |      |             |      |
| 2385400 | Sandimen              | 1964  | 1989 | 3310        | 1160 | ļ     |      |             |      |       |      |             |      |
| 2385200 | Xinfadaqıao           | 1964  | 1989 | 7000        | 2270 | ļ     |      |             |      |       |      |             |      |

| Segmentations of the maximum monthly | discharges ( Far East Asia area). |
|--------------------------------------|-----------------------------------|
|--------------------------------------|-----------------------------------|

| GRDC    | River                 | Begin | End  | 1st Segment |       | Begin | End  | 2nd Segment |      | Begin | End  | 3rd Segment |      |
|---------|-----------------------|-------|------|-------------|-------|-------|------|-------------|------|-------|------|-------------|------|
| number  |                       | year  | year | mean        | s.d.  | year  | year | mean        | s.d. | уеаг  | year | mean        | s.d. |
|         |                       |       |      |             |       |       |      |             |      |       |      |             |      |
| 2588550 | Tone                  | 1938  | 1960 | 748         | 264   | 1961  | 1986 | 538         | 218  |       |      |             |      |
| 2587100 | Ishikarı              | 1954  | 1985 | 1260        | 357   |       |      |             |      |       |      |             |      |
| 2589500 | Shinano               | 1967  | 1988 | 1080        | 218   |       |      |             |      |       |      |             |      |
| 2588200 | Yodo                  | 1967  | 1988 | 627         | 233   |       |      |             |      |       |      |             |      |
| 2590100 | Chikugo               | 1965  | 1988 | 365         | 158   |       |      |             |      |       |      |             |      |
| 2181800 | Changjiang            | 1865  | 1986 | 43800       | 6370  |       |      |             |      |       |      |             |      |
| 2106500 | Songhuajiang          | 1898  | 1931 | 2500        | 1260  | 1932  | 1987 | 3600        | 1810 |       |      |             |      |
| 2178300 | Yongding              | 1925  | 1962 | 127         | 90    | 1963  | 1988 | 55          | 31   |       |      |             |      |
| 2180500 | Jinghe                | 1934  | 1986 | 178         | 90    |       |      |             |      |       |      |             |      |
| 2181400 | Wujiang               | 1939  | 1982 | 3130        | 903   |       |      |             |      |       |      |             |      |
| 2180800 | Huanghe(Yellow River) | 1947  | 1968 | 4050        | 1080  | 1969  | 1988 | 3060        | 1210 |       |      |             |      |
| 2186900 | Beijiang              | 1954  | 1987 | 3180        | 1160  |       |      |             |      |       |      |             |      |
| 2186950 | Dongiang              | 1960  | 1987 | 1840        | 695   |       |      |             |      |       |      |             |      |
| 2998100 | Yana                  | 1938  | 1984 | 4040        | 1010  |       |      |             |      |       |      |             |      |
| 2901300 | Penzhina              | 1957  | 1984 | 4080        | 1360  |       |      |             |      |       |      |             |      |
| 2998400 | Indigirka             | 1937  | 1994 | 6310        | 1390  |       |      |             |      |       |      |             |      |
| 2903420 | Lena                  | 1935  | 1994 | 73900       | 10800 |       |      |             |      |       |      |             |      |
| 2906200 | Shilka                | 1898  | 1985 | 1250        | 525   |       |      |             |      |       |      |             |      |
| 2902800 | Kamchatka             | 1931  | 1959 | 1770        | 234   | 1960  | 1984 | 2010        | 311  |       |      |             |      |
| 2906700 | Amur (1)              | 1897  | 1954 | 20600       | 5720  | 1955  | 1961 | 28200       | 3430 |       |      |             |      |
| 2906900 | Amur (2)              | 1933  | 1990 | 22900       | 5050  |       |      |             |      |       |      |             | 1    |
| 2385760 | Li-Wu                 | 1960  | 1993 | 10100       | 4090  |       |      |             |      |       |      |             |      |
| 2385500 | Yufeng                | 1964  | 1989 | 5790        | 2240  |       |      |             |      |       |      |             |      |
| 2385400 | Sandimen              | 1964  | 1989 | 14600       | 5500  |       |      |             |      |       |      |             |      |
| 2385200 | Xinfadaqiao           | 1964  | 1989 | 26500       | 11900 |       |      |             |      |       |      |             |      |

Table 11

Table 10

Segmentations of the minimum monthly discharges ( Far East Asia area).

| GRDC    | River                 | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|-----------------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                       | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |                       |       |      |             |      |       |      |             |      |       |      |                    |      |
| 2588550 | Tone                  | 1938  | 1947 | 94          | 11   | 1948  | 1960 | 134         | 26   | 1961  | 1985 | 84                 | 14   |
| 2587100 | Ishikari              | 1954  | 1985 | 191         | 48   |       |      |             |      |       |      |                    |      |
| 2589500 | Shinano               | 1965  | 1983 | 266         | 51   | 1984  | 1988 | 196         | 24   |       |      |                    |      |
| 2588200 | Yodo                  | 1965  | 1983 | 127         | 29   | 1984  | 1988 | 77          | 5    |       |      |                    |      |
| 2590100 | Chikugo               | 1965  | 1974 | 36          | 10   | 1975  | 1988 | 46          | 6    |       |      |                    |      |
| 2181800 | Changiang             | 1865  | 1904 | 6340        | 1560 | 1905  | 1985 | 7260        | 1370 |       |      |                    |      |
| 2106500 | Songhuajiang          | 1898  | 1944 | 107         | 53   | 1945  | 1953 | 217         | 29   | 1954  | 1987 | 320                | 118  |
| 2178300 | Yongding              | 1925  | 1956 | 11          | 7    | 1957  | 1959 | 23          | 2    | 1960  | 1988 | 10                 | 35   |
| 2180500 | Jinghe                | 1933  | 1983 | 17          | 4    | 1984  | 1986 | 24          | 4    |       |      |                    |      |
| 2181400 | Wujiang               | 1939  | 1982 | 279         | 71   |       |      |             |      |       |      |                    |      |
| 2180800 | Huanghe(Yellow River) | 1949  | 1957 | 574         | 61   | 1958  | 1981 | 340         | 129  | 1982  | 1988 | 513                | 100  |
| 2186900 | Beijiang              | 1954  | 1969 | 201         | 33   | 1970  | 1987 | 271         | 88   |       |      |                    |      |
| 2186950 | Dongjiang             | 1960  | 1973 | 209         | 68   | 1974  | 1987 | 360         | 113  |       |      |                    |      |
| 2998100 | Yana                  | 1938  | 1942 | 3.4         | 2.5  | 1943  | 1984 | 0.06        | 0 24 |       |      |                    |      |
| 2901300 | Penzhina              | 1957  | 1984 | 21          | 59   |       |      |             |      |       |      |                    |      |
| 2998400 | Indigarka             | 1937  | 1990 | 74          | 2.5  | 1991  | 1992 | 16          | 3.2  | 1993  | 1994 | 8.1                | 16   |
| 2903420 | Lena                  | 1935  | 1979 | 1120        | 247  | 1980  | 1987 | 1820        | 293  | 1988  | 1994 | 2250               | 271  |
| 2906200 | Shilka                | 1897  | 1961 | 3.2         | 1.8  | 1962  | 1965 | 13          | 6    | 1966  | 1985 | 3                  | 2    |
| 2902800 | Kamchatka             | 1931  | 1946 | 331         | 23   | 1947  | 1960 | 377         | 20   | 1961  | 1984 | 415                | 25   |
| 2906700 | Amur (1)              | 1897  | 1947 | 488         | 146  | 1948  | 1985 | 777         | 161  |       |      |                    |      |
| 2906900 | Amur (2)              | 1933  | 1954 | 721         | 166  | 1955  | 1983 | 1070        | 246  | 1984  | 1990 | 2020               | 229  |
| 2385760 | Lı-Wu                 | 1960  | 1993 | 1080        | 292  |       |      |             |      |       |      |                    |      |
| 2385500 | Yufeng                | 1964  | 1989 | 429         | 139  |       |      |             |      |       |      |                    |      |
| 2385400 | Sandimen              | 1964  | 1989 | 64          | 21   |       |      |             |      |       |      |                    |      |
| 2385200 | Xinfadaqiao           | 1964  | 1989 | 1140        | 363  |       |      |             |      |       |      |                    |      |

| Table 12 | Segmentations of the mean | yearly discharges | ( South East Asia area). |
|----------|---------------------------|-------------------|--------------------------|
|----------|---------------------------|-------------------|--------------------------|

| GRDC    | River      | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | 3rd Segment |      |
|---------|------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|-------------|------|
| number  |            | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean        | s.d. |
|         |            |       |      |             |      |       |      |             |      |       |      |             |      |
| 5654500 | Pampanga   | 1946  | 1974 | 228         | 67   |       |      |             |      |       |      |             |      |
| 5654100 | Bonga      | 1947  | 1967 | 30          | 10   | 1968  | 1976 | 13          | 5.2  |       |      |             |      |
| 5223100 | Kelantan   | 1950  | 1986 | 554         | 128  |       |      |             |      |       |      |             |      |
| 2969100 | Mekong (1) | 1925  | 1971 | 8330        | 958  | 1972  | 1991 | 7010        | 963  |       |      |             |      |
| 2969150 | Nam Chi    | 1954  | 1991 | 244         | 77   |       |      |             |      |       |      |             |      |
| 2969200 | Nam Mun    | 1956  | 1991 | 623         | 197  | i i i |      |             |      |       |      |             |      |
| 2964080 | Nan        | 1956  | 1988 | 175         | 52   |       |      |             |      |       |      |             |      |
| 2969010 | Mekong (2) | 1961  | 1971 | 3000        | 435  | 1972  | 1991 | 2560        | 277  |       |      |             |      |
| 2969095 | Mekong (3) | 1962  | 1990 | 7070        | 1080 |       |      |             |      |       |      |             |      |

 Table 13
 Segmentations of the maximum monthly discharges ( South East Asia area).

| GRDC    | River      | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |            | year  | year | mean        | s.d. | уеаг  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |            |       |      |             |      |       |      |             |      |       |      |                    |      |
| 5654500 | Pampanga   | 1946  | 1974 | 753         | 267  |       |      |             |      |       |      |                    |      |
| 5654100 | Bonga      | 1947  | 1967 | 114         | 43   | 1968  | 1976 | 64          | 38   |       |      |                    |      |
| 5223100 | Kelantan   | 1950  | 1986 | 1440        | 687  |       |      |             |      |       |      |                    |      |
| 2969100 | Mekong (1) | 1925  | 1973 | 24400       | 3540 | 1974  | 1991 | 20200       | 2970 |       |      |                    |      |
| 2969150 | Nam Chi    | 1954  | 1991 | 827         | 282  |       |      |             |      |       |      |                    |      |
| 2969200 | Nam Mun    | 1956  | 1991 | 2390        | 899  |       |      |             |      |       |      |                    |      |
| 2964080 | Nan        | 1956  | 1988 | 690         | 281  |       |      |             |      |       |      |                    |      |
| 2969010 | Mekong (2) | 1961  | 1971 | 8350        | 1790 | 1972  | 1991 | 6170        | 962  |       |      |                    |      |
| 2969095 | Mekong (3) | 1962  | 1982 | 21400       | 3880 | 1983  | 1991 | 17100       | 2970 |       |      |                    |      |

 Table 14
 Segmentations of the minimum monthly discharges ( South East Asia area).

| GRDC    | River      | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | 3rd Segment |      |
|---------|------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|-------------|------|
| number  |            | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean        | s.d. |
|         |            |       |      |             |      |       |      |             |      |       |      |             |      |
| 5654500 | Pampanga   | 1946  | 1974 | 24          | 11   |       |      |             |      |       |      |             |      |
| 5654100 | Bonga      | 1947  | 1966 | 1.9         | 1.1  | 1967  | 1976 | 0.8         | 0.8  |       |      |             |      |
| 5223100 | Kelantan   | 1950  | 1957 | 341         | 77   | 1958  | 1986 | 222         | 90   |       |      |             |      |
| 2969100 | Mekong (1) | 1925  | 1950 | 1560        | 249  | 1951  | 1991 | 1410        | 183  |       |      |             |      |
| 2969150 | Nam Chi    | 1954  | 1966 | 5.6         | 2.6  | 1967  | 1991 | 39          | 18   |       |      |             |      |
| 2969200 | Nam Mun    | 1956  | 1966 | 13          | 5.5  | 1967  | 1991 | 68          | 22   |       |      |             |      |
| 2964080 | Nan        | 1956  | 1973 | 17          | 4    | 1974  | 1988 | 28          | 9    |       |      |             |      |
| 2969010 | Mekong (2) | 1961  | 1970 | 761         | 79   | 1971  | 1991 | 844         | 60   |       |      |             |      |
| 2969095 | Mekong (3) | 1962  | 1984 | 1490        | 218  | 1985  | 1991 | 1230        | 127  |       |      |             |      |

| Table ' | 15 |
|---------|----|
|---------|----|

Segmentations of the mean yearly discharges (Indian Subcontinent area).

| GRDC    | River            | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|------------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                  | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |                  |       |      |             |      | 1     |      |             |      |       |      |                    |      |
| 2357500 | Mahaweli Ganga   | 1950  | 1984 | 66          | 15   | í     |      |             |      |       |      |                    |      |
| 2357750 | Gin Ganga        | 1928  | 1989 | 62          | 11   |       |      |             |      |       |      |                    |      |
| 2548400 | Karnali River    | 1962  | 1993 | 1380        | 225  |       |      |             |      |       |      |                    |      |
| 2549300 | Kali Gandaki (1) | 1964  | 1969 | 253         | 25   | 1970  | 1976 | 311         | 34   | 1977  | 1993 | 245                | 31   |
| 2549350 | Kali Gandaki (2) | 1964  | 1968 | 546         | 57   | 1969  | 1985 | 448         | 68   |       |      |                    |      |
| 2550500 | Tamur River      | 1965  | 1986 | 334         | 44   |       |      |             |      |       |      |                    |      |
| 2646200 | Ganges R. (1)    | 1934  | 1989 | 11400       | 2130 |       |      |             |      |       |      |                    |      |
| 2846800 | Ganges R.(2)     | 1949  | 1985 | 12500       | 2400 |       |      |             |      |       |      |                    |      |
|         | Sapt Kosi        | 1947  | 1967 | 1540        | 206  | 1968  | 1978 | 1800        | 204  | 1     |      |                    |      |
| 2856900 | Godavari         | 1902  | 1979 | 3050        | 985  | ł     |      |             |      | ł     |      |                    |      |
| 2854300 | Krishna          | 1901  | 1964 | 1780        | 445  | 1965  | 1979 | 1070        | 488  | 1     |      |                    |      |
| 2853500 | Narmada          | 1949  | 1974 | 304         | 153  |       |      |             |      |       |      |                    |      |

Table 16

S

Segmentations of the maximum monthly discharges (Indian Subcontinent area).

| GRDC    | River            | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|------------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                  | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |                  |       |      |             |      |       |      |             |      |       |      |                    |      |
| 2357500 | Mahaweli Ganga   | 1950  | 1984 | 160         | 50   |       |      |             |      |       |      |                    |      |
| 2357750 | Gin Ganga        | 1928  | 1989 | 135         | 37   |       |      |             |      |       |      |                    |      |
| 2548400 | Karnali River    | 1962  | 1993 | 4390        | 815  |       |      |             |      |       |      |                    |      |
| 2549300 | Kali Gandaki (1) | 1964  | 1993 | 873         | 132  | (     |      |             |      | l i   |      |                    |      |
| 2549350 | Kali Gandaki (2) | 1964  | 1985 | 1530        | 254  | [     |      |             |      | [     |      |                    |      |
| 2550500 | Tamur River      | 1965  | 1986 | 998         | 138  |       |      |             |      |       |      |                    |      |
| 2646200 | Ganges R. (1)    | 1934  | 1945 | 35300       | 5230 | 1946  | 1989 | 42600       | 767  |       |      |                    |      |
| 2846800 | Ganges R.(2)     | 1949  | 1985 | 45900       | 9120 |       |      |             |      |       |      |                    |      |
|         | Sapt Kosi        | 1947  | 1969 | 4500        | 851  | 1970  | 1978 | 5580        | 783  |       |      |                    |      |
| 2856900 | Godavari         | 1902  | 1979 | 13500       | 5100 | }     |      |             |      |       |      |                    |      |
| 2854300 | Krishna          | 1901  | 1970 | 7300        | 2280 | 1971  | 1979 | 4470        | 2320 |       |      |                    |      |
| 2853500 | Narmada          | 1949  | 1971 | 1490        | 560  | 1972  | 1974 | 3580        | 3570 |       |      |                    |      |

Table 17

Segmentations of the minimum monthly discharges (Indian Subcontinent area).

| GRDC    | River            | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|------------------|-------|------|-------------|------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |                  | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |                  |       |      |             |      |       |      |             |      |       |      |                    |      |
| 2357500 | Mahaweli Ganga   | 1950  | 1983 | 13          | 7.2  |       |      |             |      |       |      |                    |      |
| 2357750 | Gin Ganga        | 1928  | 1971 | 21          | 6    | 1972  | 1989 | 14          | 7    |       |      |                    |      |
| 2548400 | Karnali River    | 1962  | 1993 | 317         | 61   |       |      |             |      |       |      |                    |      |
| 2549300 | Kali Gandaki (1) | 1964  | 1975 | 34          | 7    | 1976  | 1985 | 45          | 2    | 1986  | 1993 | 55                 | 5    |
| 2549350 | Kali Gandaki (2) | 1964  | 1985 | 75          | 20   |       |      |             |      |       |      |                    |      |
| 2550500 | Tamur River      | 1965  | 1986 | 50          | 14   |       |      |             |      |       |      |                    |      |
| 2646200 | Ganges R. (1)    | 1934  | 1975 | 1960        | 357  | 1976  | 1989 | 1000        | 270  |       |      |                    |      |
| 2846800 | Ganges R.(2)     | 1949  | 1985 | 1730        | 317  |       |      |             |      |       |      |                    |      |
| ]       | Sapt Kosi        | 1947  | 1978 | 342         | 35   |       |      |             |      |       |      |                    |      |
| 2856900 | Godavari         | 1902  | 1924 | 40          | 40   | 1925  | 1969 | 72          | 36   | 1970  | 1979 | 146                | 59   |
| 2854300 | Krishna          | 1901  | 1953 | 11          | 12   | 1954  | 1979 | 43          | 48   |       |      |                    |      |
| 2853500 | Narmada          | 1949  | 1974 | 1.9         | 1.2  |       |      |             |      |       |      |                    |      |

| GRDC    | River     | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | 3rd Segment |      |
|---------|-----------|-------|------|-------------|------|-------|------|-------------|------|-------|------|-------------|------|
| number  |           | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean        | s.d. |
|         |           |       | -    |             |      |       |      |             |      |       |      |             |      |
| 2917100 | Amu-Darya | 1931  | 1960 | 1500        | 260  | 1961  | 1973 | 1090        | 397  |       |      |             |      |
| 2917450 | Zaravchan | 1932  | 1994 | 155         | 21   |       |      |             |      |       |      |             |      |
| 2917700 | Gunt      | 1940  | 1985 | 104         | 18   |       |      |             |      |       |      |             |      |
| 2917900 | Vakhsh    | 1932  | 1967 | 639         | 78   |       |      |             |      |       |      |             |      |
| 2910470 | Biya      | 1895  | 1901 | 375         | 104  | 1902  | 1985 | 487         | 94   |       |      |             |      |
| 2912600 | ОЪ        | 1930  | 1994 | 12500       | 1920 |       |      |             |      |       |      |             |      |
| 2910490 | Tom (1)   | 1894  | 1985 | 651         | 118  |       |      |             |      | [     |      |             |      |
| 2910300 | Tom (2)   | 1965  | 1990 | 1050        | 177  |       |      |             |      | ł     |      |             |      |
| 2912400 | Tura      | 1896  | 1985 | 190         | 107  |       |      |             |      |       |      |             |      |
| 2909150 | Yenisei   | 1936  | 1973 | 17600       | 1230 | 1974  | 1995 | 18800       | 1430 |       |      |             |      |
| 2916200 | Syr-Darya | 1930  | 1960 | 683         | 178  | 1961  | 1973 | 485         | 153  | 1974  | 1984 | 211         | 66   |
| 2919200 | Ural      | 1915  | 1981 | 297         | 191  |       |      |             |      |       |      |             |      |
| 2916850 | Naryn     | 1933  | 1973 | 392         | 82   | 1974  | 1980 | 228         | 27   | 1981  | 1990 | 353         | 65   |

 Table 18
 Segmentations of the mean yearly discharges ( Central Asia area).

Table 19 Segmentations of the maximum monthly discharges (Central Asia area)

| GRDC    | River     | Begin | End  | 1st Segment |       | Begin | End  | 2nd Segment |      | Begin | End  | <b>3rd Segment</b> |      |
|---------|-----------|-------|------|-------------|-------|-------|------|-------------|------|-------|------|--------------------|------|
| number  |           | year  | year | mean        | s.d.  | year  | year | mean        | s.d. | year  | year | mean               | s.d. |
|         |           |       |      |             |       |       |      |             |      |       |      |                    |      |
| 2917100 | Amu-Darya | 1931  | 1960 | 3540        | 889   | 1961  | 1973 | 2650        | 1050 |       |      |                    |      |
| 2917450 | Zaravchan | 1932  | 1995 | 467         | 84    |       |      |             |      |       |      |                    |      |
| 2917700 | Gunt      | 1940  | 1985 | 342         | 91    |       |      |             |      |       |      |                    |      |
| 2917900 | Vakhsh    | 1932  | 1966 | 1670        | 274   |       |      |             |      |       |      |                    |      |
| 2910470 | Biya      | 1895  | 1985 | 1400        | 414   |       |      |             |      |       |      |                    |      |
| 2912600 | Ob        | 1930  | 1994 | 33400       | 3740  |       |      |             |      |       |      |                    |      |
| 2910490 | Tom (1)   | 1894  | 1985 | 2940        | 775   |       |      |             |      |       |      |                    |      |
| 2910300 | Tom (2)   | 1965  | 1966 | 6700        | 1130  | 1967  | 1990 | 4450        | 1070 |       |      |                    |      |
| 2912400 | Tura      | 1896  | 1985 | 849         | 779   |       |      |             |      |       |      |                    |      |
| 2909150 | Yenisei   | 1936  | 1995 | 78100       | 12400 |       |      |             |      |       |      |                    |      |
| 2916200 | Syr-Darya | 1930  | 1960 | 1320        | 427   | 1961  | 1984 | 718         | 284  |       |      |                    |      |
| 2919200 | Ural      | 1915  | 1981 | 1530        | 1230  |       |      |             |      |       |      |                    |      |
| 2916850 | Naryn     | 1933  | 1973 | 1020        | 301   | 1974  | 1990 | 668         | 182  |       |      |                    |      |

 Table 20
 Segmentations of the minimum monthly discharges ( Central Asia area).

| GRDC    | River     | Begin | End  | 1st Segment |      | Begin | End  | 2nd Segment |      | Begin | End  | 3rd Segment |      |
|---------|-----------|-------|------|-------------|------|-------|------|-------------|------|-------|------|-------------|------|
| number  |           | year  | year | mean        | s.d. | year  | year | mean        | s.d. | year  | year | mean        | s.d. |
|         |           |       |      |             |      |       |      |             |      |       |      |             |      |
| 2917100 | Amu-Darya | 1931  | 1956 | 517         | 86   | 1857  | 1965 | 255         | 52   | 1966  | 1973 | 49.5        | 109  |
| 2917450 | Zaravchan | 1932  | 1993 | 35          | 4    | }     |      |             |      |       |      |             |      |
| 2917700 | Gunt      | 1940  | 1985 | 26          | 1.9  | ł     |      |             |      |       |      |             |      |
| 2917900 | Vakhsh    | 1932  | 1967 | 173         | 17   | ſ     |      |             |      |       |      |             |      |
| 2910470 | Biya      | 1895  | 1902 | 37          | 8    | 1903  | 1985 | 56          | 11   |       |      |             |      |
| 2912600 | Оb        | 1930  | 1958 | 2800        | 281  | 1959  | 1992 | 3530        | 504  | 1993  | 1994 | 4880        | 1300 |
| 2910490 | Tom (1)   | 1894  | 1919 | 55          | 9.5  | 1929  | 1985 | 74          | 21   |       |      |             |      |
| 2910300 | Tom (2)   | 1965  | 1982 | 115         | 29   | 1983  | 1990 | 159         | 20   |       |      |             |      |
| 2912400 | Tura      | 1896  | 1978 | 23          | 8.3  | 1979  | 1985 | 33          | 10   | 1     |      |             |      |
| 2909150 | Yenisei   | 1936  | 1968 | 3920        | 443  | 1969  | 1983 | 5880        | 586  | 1984  | 1995 | 7490        | 457  |
| 2916200 | Syr-Darya | 1930  | 1960 | 346         | 96   | 1961  | 1970 | 229         | 116  | 1971  | 1984 | 82          | 40   |
| 2919200 | Ural      | 1915  | 1953 | 38          | 19   | 1954  | 1970 | 70          | 18   | 1971  | 1981 | 42          | 16   |
| 2916850 | Naryn     | 1933  | 1987 | 131         | 40   | 1988  | 1990 | 218         | 14   |       |      |             |      |

| $\mathbf{r}_1 \setminus \mathbf{n}$ | 10   | 25   | 50   | 75   | 100  | 200  | 00   |
|-------------------------------------|------|------|------|------|------|------|------|
| 0,1                                 | 0,84 | 0,82 | 0,82 | 0,82 | 0,82 | 0,82 | 0,82 |
| 0,2                                 | 0,7  | 0,68 | 0,67 | 0,67 | 0,67 | 0,67 | 0,67 |
| 0,3                                 | 0,58 | 0,55 | 0,55 | 0,54 | 0,54 | 0,54 | 0,54 |
| 0,4                                 | 0,47 | 0,45 | 0,44 | 0,43 | 0,43 | 0,43 | 0,43 |
| 0,5                                 | 0,38 | 0,35 | 0,34 | 0,34 | 0,34 | 0,34 | 0,33 |
| 0,6                                 | 0,31 | 0,27 | 0,26 | 0,25 | 0,25 | 0,25 | 0,25 |
| 0,7                                 | 0,24 | 0,2  | 0,19 | 0,18 | 0,18 | 0,18 | 0,18 |
| 0,8                                 | 0,18 | 0,14 | 0,12 | 0,12 | 0,12 | 0,11 | 0,11 |
| 0,9                                 | 0,14 | 0,08 | 0,06 | 0,06 | 0,06 | 0,06 | 0,05 |
| 0,95                                | 0,12 | 0,06 | 0,04 | 0,03 | 0,03 | 0,03 | 0,03 |

 Table 21: Information Content of a single observation, according to the length of the sample n and of the estimated lag-1 autocorrelation coefficient r<sub>1</sub>.

Table 22: "Effective" number of independent observations for various combinations of autocorrelation<br/>coefficients  $r_1$  and series lengths n.

| $\mathbf{r}_1 \setminus \mathbf{n}$ | 10  | 25  | 50  | 75  | 100 | 200 |
|-------------------------------------|-----|-----|-----|-----|-----|-----|
| 0,1                                 | 8,4 | 21  | 41  | 62  | 82  | 164 |
| 0,2                                 | 7   | 17  | 34  | 50  | 67  | 134 |
| 0,3                                 | 5,8 | 14  | 27  | 41  | 54  | 108 |
| 0,4                                 | 4,7 | 11  | 21  | 33  | 43  | 86  |
| 0,5                                 | 3,9 | 8,8 | 17  | 25  | 34  | 67  |
| 0,6                                 | 3,1 | 6,8 | 13  | 19  | 25  | 50  |
| 0,7                                 | 2,4 | 5   | 9,3 | 14  | 18  | 36  |
| 0,8                                 | 1,8 | 3,4 | 6,1 | 8,9 | 12  | 23  |
| 0,9                                 | 14  | 2   | 3,2 | 4,5 | 5,8 | 11  |
| 0,95                                | 1,2 | 1,5 | 2   | 2,6 | 3,2 | 5,7 |

 Table 23: Set of non-parametric tests for monotonic and stepwise trend detection available for independent/ dependent, seasonal/non-seasonal time series.

| TYPE OF TREND | PERSISTENCE | SEASONALITY  | APPROPRIATE TEST         |  |  |
|---------------|-------------|--------------|--------------------------|--|--|
|               | Markovian   | No seasons   | Lettenmaier/Spearman     |  |  |
| Monotonic     | persistence | With seasons | Hirsch and Slack         |  |  |
| trend         | No          | No seasons   | Spearman/Kendall         |  |  |
|               | persistence | With seasons | Kendall seasonal         |  |  |
|               | Markovian   | No seasons   | Lettenmaier/Mann-Whitney |  |  |
| Stepwise      | persistence | With seasons | Hirsch and Slack         |  |  |
| trend         | No          | No seasons   | Mann-Whitney             |  |  |
|               | persistence | With seasons | Kendall seasonal         |  |  |
| River and GRDC #   |            | Start Year | End Year | type of trend   | level               | sd       | sd (mean) | RMSE |
|--------------------|------------|------------|----------|-----------------|---------------------|----------|-----------|------|
| Herbert River      | period 1   | 1916       | 1960     |                 | 113                 | 59       | 9         |      |
| 5101161            | period 2   | 1961       | 1970     | Step trend      | 76                  | 45       | 13        | 56   |
|                    | period 3   | 1971       | 1996     | Monotonic trend | 171-39 (-5 / yr)    | 1.7 / yr |           | 69   |
| Avoca River        | period 1   | 1890       | 1895     |                 | 316                 | 150      | 34        |      |
| 5304080            | period 2   | 1896       | 1987     | Step trend      | 6.4                 | 6.9      | 0.4       | 34.5 |
|                    | period 3   | 1988       | 1993     | Step trend      | 378                 | 254      | 49        | 67.8 |
| Murrumbidgee River | period 1   | 1927       | 1960     |                 | 1190                | 710      | 87        |      |
| 5204105            | period 2   | 1961       | 1993     | Step trend      | 457                 | 308      | 37        | 545  |
|                    | period 1-2 | 1927       | 1993     | Monotonic trend | 1270-370 (-14 / yr) | 3.7 / yr |           | 602  |
| Serpentine River   | period 1   | 1911       | 1970     |                 | 6.2                 | 3.8      | 0.59      |      |
| 5606145            | period 2   | 1971       | 1992     | Step trend      | 0.49                | 1.55     | 0.19      | 3.36 |

Table 24 : Trends in mean yearly discharges ( Oceania-Pacific area).

Table 25 : Trends in maximum monthly discharges ( Oceania-Pacific area).

| River and GRDC #   |            | Start Year | End Year | type of trend   | level                | sd        | sd (mean) | RMSE |
|--------------------|------------|------------|----------|-----------------|----------------------|-----------|-----------|------|
| Avoca River        | period 1   | 1890       | 1895     |                 | 1240                 | 531       | 116       |      |
| 5304080            | period 2   | 1896       | 1987     | Step trend      | 32.6                 | 34.4      | 1.7       | 125  |
|                    | period 3   | 1988       | 1993     | Step trend      | 2010                 | 1220      | 226       | 327  |
| Murrumbidgee River | period 1   | 1927       | 1960     |                 | 3730                 | 2250      | 301       |      |
| 5204105            | period 2   | 1961       | 1993     | Step trend      | 1480                 | 1090      | 144       | 1760 |
|                    | period 1-2 | 1927       | 1993     | Monotonic trend | 3990-1190 (-42 / yr) | _3.7 / yr |           | 1920 |
| Serpentine River   | period 1   | 1911       | 1970     |                 | 29.1                 | 17.4      | 1.5       |      |
| 5606145            | period 2   | 1971       | 1992     | Step trend      | 2.19                 | 6         | 0.8       | 15.1 |
|                    | period 1-2 | 1911       | 1992     | Monotonic trend | 30.6-6.8 (-0.3 / yr) | 0.2 / yr  |           | 16.9 |

Table 26 : Trends in minimum monthly discharges (Oceania-Pacific area).

| River and GRDC #   |          | Start Year | End Year | type of trend | level | sd   | sd (mean) | RMSE |
|--------------------|----------|------------|----------|---------------|-------|------|-----------|------|
| Daly               | period 1 | 1970       | 1973     |               | 8.9   | 0.91 | 0.53      |      |
| 5708145            | period 2 | 1974       | 1995     | Step trend    | 17.9  | 5.5  | 1.1       |      |
| Herbert River      | period 1 | 1916       | 1996     | No trend      | 5.4   | 4.8  | 0.5       | 48   |
| 5101161            |          |            |          |               |       |      |           |      |
| Mitchell River     | period 1 | 1938       | 1987     | No trend      | 2.24  | 1.94 | 0.16      |      |
| 5302242            |          |            |          |               |       |      |           |      |
| Avoca River        | period 1 | 1890       | 1987     |               | 0.19  | 1.2  | 0.07      | •••  |
| 5304080            | period 2 | 1988       | 1993     | Step trend    | 5.7   | 3.6  | 0.84      | 1.46 |
| Huon River         | period 1 | 1949       | 1994     | No trend      | 18.3  | 8.9  | 1.3       | 8.9  |
| 5803600            |          |            |          |               |       |      |           | -    |
| Murrumbidgee River | period 1 | 1927       | 1960     |               | 113   | 76.7 | 9.9       |      |
| 5204105            | period 2 | 1961       | 1993     | Step trend    | 55    | 31   | 4         | 58.3 |
| Serpentine River   | period 1 | 1911       | 1992     | No trend      | 6.2   | 0.21 | 0.014     | 0.21 |
| 5606145            |          |            |          |               |       |      |           |      |

|                       |            |            |          |                 |                      |          |           | DIAGE |
|-----------------------|------------|------------|----------|-----------------|----------------------|----------|-----------|-------|
| Kiver and GRDC #      |            | Start Year | End Year | type of trend   | level                | sd       | sd (mean) | RMSE  |
| Tone                  | period 1   | 1938       | 1960     |                 | 288                  | 62       | 13        |       |
| 2588550               | period 2   | 1961       | 1985     | Step trend      | 222                  | 58       | 11        | 60    |
|                       | period 1-2 | 1938       | 1985     | Monotonic trend | 300-221 (-2/yr)      | 0.5 / уг |           | 62    |
| Shinano               | period 1   | 1965       | 1988     | No trend        | 530                  | 143      | 29        | 143   |
| 2589500               | - <u></u>  |            |          |                 |                      |          |           |       |
| Yodo                  | period 1   | 1965       | 1976     |                 | 316                  | 112      | 34        | •••   |
| 2588200               | period 2   | 1977       | 1988     | Step trend      | 234                  | 51       | 14        | 85    |
|                       | period 1-2 | 1965       | 1988     | Monotonic trend | 351-191 (-1/уг)      | 2 / yr   |           | 81    |
| Changjiang            | period 1   | 1865       | 1953     |                 | 23700                | 3160     | 272       | •••   |
| 2181800               | period 2   | 1954       | 1985     | Step trend      | 22300                | 2910     | 410       | 3090  |
|                       | period 1-2 | 1865       | 1985     | Monotonic trend | 24300-22300 (-17/yr) | 7/уг     |           | 3090  |
| Songhuajiang          | period 1   | 1898       | 1928     |                 | 895                  | 396      | 50        |       |
| 2106500               | period 2   | 1929       | 1987     | Step trend      | 1360                 | 401      | 36        | 399   |
|                       | period 1-2 | 1898       | 1987     | Monotonic trend | 962-1450 (5.5/yr)    | 1.7 / yr |           | 433   |
| Yongding              | period 1   | 1925       | 1949     |                 | 39                   | 16       | 2         |       |
| 2178300               | period 2   | 1950       | 1964     | Step trend      | 50.3                 | 15.9     | 2         | 15.9  |
|                       | period 3   | 1965       | 1988     | Step trend      | 21.1                 | 10.8     | 1.5       | 13.9  |
|                       | period 2-3 | 1950       | 1988     | Monotonic trend | 64.7-8.6(-1.5/yr)    | 1.6 /yr  |           | 11.7  |
| Huanghe(Yellow River) | period 1   | 1947       | 1966     |                 | 1610                 | 450      | 103       |       |
| 2180800               | period 2   | 1967       | 1988     | Step trend      | 1260                 | 345      | 75        | 399   |
|                       | period 1-2 | 1947       | 1988     | Monotonic trend | 1670-1180 (-12/yr)   | 5.5 / уг |           | 411   |
| Shilka                | period 1   | 1898       | 1982     |                 | 398                  | 148      | 12        |       |
| 2906200               | period 2   | 1984       | 1985     | Step trend      | 627                  | 159      | 59        | 148   |
| Kamchatka             | period 1   | 1931       | 1959     |                 | 736                  | 74       | 14        |       |
| 2902800               | period 2   | 1960       | 1984     | Step trend      | 826                  | 71       | 14        | 72    |
|                       | period 1-2 | 1931       | 1984     | Monotonic trend | 707-850 (2.6/yr)     | 0.6/ут   |           | 74    |
| Amur (1)              | period 1   | 1897       | 1955     | No trend        | 8370                 | 1840     | 169       | 1840  |
| 2906700               | period 2   | 1956       | 1985     | Monotonic trend | 10600-6640(-130/уг)  | 35/ут    |           | 1620  |
| Yufeng                | period 1   | 1964       | 1967     |                 | 1110                 | 265      | 153       |       |
| 2385500               | period 2   | 1968       | 1989     | Step trend      | 1780                 | 413      | 86        | 398   |
|                       | period 1-2 | 1964       | 1989     | Monotonic trend | 1430-1980(22/yr)     | il/yr    |           | 422   |
|                       |            |            |          |                 |                      |          |           |       |

Table 27 : Trends in mean yearly discharges ( Far East Asia area).

### Table 28 : Trends in maximum monthly discharges ( Far East Asia area).

| River and GRDC # |            | Start Year | End Year | type of trend   | level                | sd              | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|----------------------|-----------------|-----------|------|
| Tone             | period 1   | 1938       | 1962     |                 | 742                  | 255             | 52        |      |
| 2588550          | period 2   | 1963       | 1985     | Step trend      | 535                  | 218             | 44        | 237  |
|                  | period 1-2 | 1938       | 1985     | Monotonic trend | 761-517(-5/yr)       | <u>2.5 / уг</u> |           | 248  |
| Songhuajiang     | period 1   | 1898       | 1931     |                 | 2500                 | 1260            | 218       | •••  |
| 2106500          | period 2   | 1932       | 1987     | Step trend      | 3580                 | 1780            | 236       | 1610 |
|                  | period 1-2 | 1898       | 1987     | Monotonic trend | 2680-3690(11/уг)     | 7 / yr          |           | 1670 |
| Yongding         | period 1   | 1925       | 1962     |                 | 126                  | 89              | 15        |      |
| 2178300          | period 2   | 1963       | 1988     | Step trend      | 58.6                 | 36              | 7         | 72   |
|                  | period 1-2 | 1925       | 1988     | Monotonic trend | 148-47 (-1.5/yr)     | 0.5 /yr         |           | 74   |
| Kamchatka        | period 1   | 1931       | 1959     |                 | 1780                 | 231             | 43        |      |
| 2902800          | period 2   | 1960       | 1984     | Step trend      | 1990                 | 311             | 61        | 272  |
|                  | period 1-2 | 1931       | 1984     | Monotonic trend | 1730-2030(-5.5/уг)   | 2.5/уг          | ••        | 280  |
| Amur (1)         | period 1   | 1897       | 1953     | No trend        | 20800                | 5590            | 740       | 5590 |
| 2906700          | period 2   | 1954       | 1985     | Monotonic trend | 25300-16900(-262/yr) | 100/yr          |           | 5390 |

| River and GRDC #      | St         | tart Ye | nd Yea | type of trend   | level               | sd       | ;d (mean | d (mean RMSE |  |
|-----------------------|------------|---------|--------|-----------------|---------------------|----------|----------|--------------|--|
| Tone                  | period 1   | 1938    | 1947   | No trend        | 94                  | 10       | 1.8      | 10.4         |  |
| 2588550               | period 2   | 1948    | 1973   |                 | 112                 | 29       | 2.8      |              |  |
|                       | period 3   | 1974    | 1985   | Step trend      | 79                  | 16       | 2.1      | 25.6         |  |
|                       | period 2-3 | 1948    | 1985   | Monotonic trend | 138-64(-2/yr)       | 0.3 / yr |          | 20.4         |  |
| Shinano               | period 1   | 1965    | 1988   | Monotonic trend | 295-207 (-4 / yr)   | 1.3 /yr  |          | 46           |  |
| 2589500               |            | _       |        |                 |                     |          |          |              |  |
| Yodo                  | period 1   | 1965    | 1983   |                 | 127                 | 29       | 4        |              |  |
| 2588200               | period 2   | 1984    | 1988   | Step trend      | 86                  | 20       | 5        | 27           |  |
| Chikugo               | period 1   | 1965    | 1974   |                 | 36                  | 10.4     | 3.5      |              |  |
| 2590100               | period 2   | 1975    | 1988   | Step trend      | 45.3                | 6.5      | 1.7      | 8.2          |  |
|                       | period 1-2 | 1965    | 1988   | Monotonic trend | 34.6-49.2(0.63/yr)  | 0.32/yr  |          | 8.2          |  |
| Changjiang            | period 1   | 1865    | 1904   |                 | 6370                | 1570     | 252      |              |  |
| 2181800               | period 2   | 1905    | 1985   | Step trend      | 7230                | 1370     | 151      | 1440         |  |
|                       | period 1-2 | 1865    | 1985   | Monotonic trend | 6390-7520(10 /yr)   | 4/yr     |          | 1460         |  |
| Songhuajiang          | period 1   | 1898    | 1946   |                 | 108                 | 53       | 3.3      |              |  |
| 2106500               | period 2   | 1947    | 1987   | Step trend      | 302                 | 112      | 7.5      | 85.5         |  |
|                       | period 1-2 | 1898    | 1987   | Monotonic trend | 52.2-345 (3.1 / yr) | 4 / yr   |          | 96           |  |
| Yongding              | period 1   | 1925    | 1942   | No trend        | 9.5                 | 6.4      | 1.1      | 6.4          |  |
| 2178300               | period 2   | 1943    | 1970   |                 | 15.4                | 7        | 1.1      |              |  |
|                       | period 3   | 1971    | 1988   | Step trend      | 9.3                 | 3.2      | 0.4      | 5.1          |  |
|                       | period 2-3 | 1943    | 1988   | Monotonic trend | 17.2-6.5(-0.23/yr)  | 0.02 /уг |          | 5.1          |  |
| Jinghe                | period 1   | 1933    | 1986   | No trend        | 17.2                | 4.6      | 0.38     | 4.6          |  |
| 2180500               |            |         |        |                 |                     |          |          |              |  |
| Huanghe(Yellow River) | period 1   | 1947    | 1955   |                 | 576                 | 60       | 14       | •••          |  |
| 2180800               | period 2   | 1956    | 1988   | Step trend      | 385                 | 141      | 16.9     | 129          |  |
| Beijang               | period 1   | 1954    | 1969   |                 | 201                 | 33       | 5.5      |              |  |
| 2186900               | period 2   | 1970    | 1969   | Step trend      | 268                 | 86       | 12.6     | 67           |  |
| Dongjiang             | period 1   | 1960    | 1973   |                 | 208                 | 68       | 10.5     |              |  |
| 2186950               | period 2   | 1974    | 1987   | Step trend      | 351                 | 111      | 16       | 93           |  |
|                       | period 1-2 | 1960    | 1987   | Monotonic trend | 171-398( 8/yr)      | 2/yr     |          | 96           |  |
| Yana                  | period 1   | 1938    | 1984   | No trend        | 0.42                | 1.3      | 0.08     | 1.3          |  |
| 2998100               |            |         |        |                 |                     |          |          |              |  |
| Indigirka             | period 1   | 1937    | 1984   |                 | 7.1                 | 2.4      | 0.35     |              |  |
|                       | period 2   | 1985    | 1994   | Step trend      | 10.2                | 3.8      | 1.1      | 2.7          |  |
| Lena                  | period 1   | 1935    | 1978   |                 | 1.1                 | 0.25     | 0.015    | ••           |  |
| 2903420               | period 2   | 1979    | 1994   | Step trend      | 1.9                 | 0.4      | 0.037    | 0.3          |  |
| Shilka                | period 1   | 1897    | 1985   | No trend        | 3.63                | 3.1      | 0.2      | 3.1          |  |
| 2906200               |            |         |        |                 |                     |          |          |              |  |
| Kamchatka             | period 1   | 1931    | 1984   | Monotonic trend | 323-438( 2.1/yr)    | 0.21     |          | 24           |  |
| 2902800               |            |         |        |                 |                     |          |          |              |  |
| Amur (1)              | period 1   | 1897    | 1946   |                 | 486                 | 146      | 8,6      |              |  |
| 2906700               | period 2   | 1947    | 1985   | Step trend      | 765                 | 165      | 10.7     | 155          |  |
|                       | period 1-2 | 1897    | 1985   | Monotonic trend | 413-910(4.6/yr)     | 0.75/yr  |          | 173          |  |
| Amur (2)              | period 1   | 1933    | 1978   |                 | 877                 | 246      | 13       |              |  |
| 2906900               | period 2   | 1979    | 1990   | Step trend      | 1660                | 444      | 45       | 302          |  |
|                       | period 1-2 | 1933    | 1990   | Monotonic trend | 492-1610 (20/yr)    | 2.1/yr   |          | 301          |  |

Table 29 : Trends in minimum monthly discharges ( Far East Asia area).

| River and GRDC # |            | Start Year | End Year | type of trend   | level              | sd     | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|--------------------|--------|-----------|------|
| Bonga            | period 1   | 1947       | 1959     | No trend        | 26.3               | 8      | 1.4       | 8    |
| 5654100          | period 2   | 1960       | 1976     | Monotonic trend | 42.8-4.2( -2.5/yr) | 0.5/уг |           | 8.2  |
| Mekong (1)       | period 1   | 1925       | 1966     |                 | 8350               | 898    | 88        |      |
| 2969100          | period 2   | 1967       | 1991     | Step trend      | 7270               | 1110   | 138       | 989  |
|                  | period 1-2 | 1925       | 1991     | Monotonic trend | 8820-7040(-27/yr)  | 6/yr   |           | 992  |
| Mekong (2)       | period 1   | 1961       | 1971     |                 | 2950               | 400    | 126       |      |
| 2969010          | period 2   | 1972       | 1991     | Step trend      | 2600               | 334    | 73        | 356  |
|                  | period 1-2 | 1961       | 1991     | Monotonic trend | 2950-2480(-15/уг)  | 7/yr   | ••        | 367  |

Table 30 : Trends in mean yearly discharges (South East Asia area).

## Table 31 : Trends in maximum monthly discharges ( South East Asia area).

| River and GRDC # |            | Start Year | End Year | type of trend   | level                | sd    | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|----------------------|-------|-----------|------|
| Bonga            | period 1   | 1947       | 1958     | No trend        | 98.6                 | 37.6  | 10        | 37.6 |
| 5654100          | period 2   | 1959       | 1976     | Monotonic trend | 163-358(8/yr)        | 2/yr  | ••        | 36   |
| Mekong (1)       | period 1   | 1925       | 1973     |                 | 24400                | 3500  | 508       |      |
| 2969100          | period 2   | 1974       | 1991     | Step trend      | 20500                | 3670  | 841       | 3560 |
|                  | period 1-2 | 1925       | 1991     | Monotonic trend | 25600-21000(-70/yr)  | 23/yr |           | 3720 |
| Mekong (2)       | period 1   | 1961       | 1971     |                 | 8080                 | 1550  | 492       |      |
| 2969010          | period 2   | 1972       | 1991     | Step trend      | 6400                 | 1380  | 300       | 1430 |
|                  | period 1-2 | 1961       | 1991     | Monotonic trend | 8230-5650(-80/yr)    | 29/yr | ••        | 1450 |
| Mekong (3)       | period 1   | 1962       | 1981     |                 | 21400                | 3950  | 906       |      |
| 2969095          | period 2   | 1982       | 1991     | Step trend      | 17800                | 2920  | 924       | 3630 |
|                  | period 1-2 | 1962       | 1991     | Monotonic trend | 22700-17700(-180/yr) | 82/уг |           | 3710 |

# Table 32 : Trends in minimum monthly discharges ( South East Asia area).

| River and GRDC #      |            | Start Year | End Year | type of trend   | level              | sð      | sd (mean) | RMSE |
|-----------------------|------------|------------|----------|-----------------|--------------------|---------|-----------|------|
| Bonga                 | period 1   | 1947       | 1966     |                 | 1.9                | 1.1     | 0.26      |      |
| 5654100               | period 2   | 1967       | 1976     | Step trend      | 0.9                | 0.8     | 0.24      | 1.01 |
|                       | period 1-2 | 1947       | 1976     | Monotonic trend | 2.3-0.74(-0.05/yr) | 0.02    | ·         | 1.01 |
| Kelantan              | period 1   | 1950       | 1961     |                 | 317                | 36      | 13.6      |      |
| 5223100               | period 2   | 1962       | 1986     | Step trend      | 231                | 101     | 18.5      | 93   |
| Mekong (1)            | period 1   | 1925       | 1950     |                 | 1550               | 247     | 35.7      |      |
| 2969100               | period 2   | 1951       | 1991     | Step trend      | 1410               | 183     | 20.4      | 210  |
| Nam Chi               | period 1   | 1954       | 1966     |                 | 5.83               | 2.51    | 0.35      |      |
| 2969150               | period 2   | 1967       | 1991     | Step trend      | 37.8               | 18.3    | 1.72      | 15.2 |
| Nam Mun               | period 1   | 1956       | 1966     |                 | 18.4               | 14.4    | 2.3       |      |
| 2969200               | period 2   | 1967       | 1991     | Step trend      | 62                 | 21      | 2.1       | 19.3 |
| Nan                   | period 1   | 1956       | 1967     |                 | 16.5               | 3.9     | 0.46      |      |
| 2964080               | period 2   | 1968       | 1988     | Step trend      | 27.8               | 8.9     | 1.1       | 6.8  |
|                       | period 1-2 | 1956       | 1988     | Monotonic trend | 13-30.9(5.5/yr)    | 0.13/yr |           | 7    |
| Mekong (2)            | period 1   | 1961       | 1971     |                 | 764                | 79      | 26        |      |
| 2969010               | period 2   | 1972       | 1991     | Step trend      | 839                | 62      | 13        | 67   |
|                       | period 1-2 | 1961       | 1991     | Monotonic trend | 756-878(4/yr)      | 1.2/yr  |           | 66   |
| Mekong (3)<br>2969095 | period 1   | 1962       | 1991     | No trend        | 1440               | 224     | 20.8      | 224  |

| River and GRDC # |            | Start Year | End Year | type of trend   | level            | sd   | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|------------------|------|-----------|------|
| Kali Gandaki (1) | period 1   | 1964       | 1976     |                 | 284              | 42   | 12        |      |
| 2549300          | period 2   | 1977       | 1993     | Step trend      | 247              | 30   | 7         | 35   |
| Kali Gandaki (2) | period 1   | 1964       | 1968     |                 | 530              | 45   | 22        |      |
| 2549350          | period 2   | 1969       | 1985     | Step trend      | 457              | 74   | 17        | 70   |
|                  | period 1-2 | 1964       | 1985     | Monotonic trend | 525-415(-5/yr)   | 2/yr |           | 67   |
| Sapt Kosi        | period 1   | 1947       | 1967     |                 | 1540             | 206  | 46        |      |
|                  | period 2   | 1968       | 1978     | Step trend      | 1770             | 202  | 58        | 204  |
|                  | period 1-2 | 1947       | 1978     | Monotonic trend | 1480-1780(10/yr) | 4/yr |           | 216  |
| Krishna          | period 1   | 1901       | 1960     |                 | 1780             | 454  | 37        | ••   |
| 2854300          | period 2   | 1961       | 1979     | Step trend      | 1250             | 522  | 74        | 472  |

 Table 33 : Trends in mean yearly discharges (Indian Subcontinent area).

## Table 34 : Trends in maximum monthly discharges (Indian Subcontinent area).

| River and GRDC # |            | Start Year | End Year | type of trend   | level              | sd     | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|--------------------|--------|-----------|------|
| Ganges R. (1)    | period 1   | 1934       | 1945     |                 | 35200              | 5220   | 1580      |      |
| 2646200          | period 2   | 1946       | 1989     | Step trend      | 42500              | 7560   | 1130      | 7160 |
| Sapt Kosi        | period 1   | 1947       | 1969     |                 | 4510               | 848    | 181       |      |
|                  | period 2   | 1970       | 1978     | Step trend      | 5440               | 814    | 257       | 837  |
|                  | period 1-2 | 1947       | 1978     | Monotonic trend | 4180-5420(40/yr)   | 17/уг  |           | 866  |
| Krishna          | period 1   | 1901       | 1960     | Monotonic trend | 9590-3960(-245/yr) | 100/yr | ••        | 311  |
| 2854300          |            |            |          |                 |                    |        |           |      |
| Narmada          | period 1   | 1949       | 1974     | No trend        | 1730               | 1300   | 255       | 1300 |
| 2853500          |            |            |          |                 |                    |        |           |      |

 Table 35 : Trends in minimum monthly discharges (Indian Subcontinent area).

| River and GRDC #            |          | Start Year | End Year | type of trend   | level               | sd     | sd (mean) | RMSE |
|-----------------------------|----------|------------|----------|-----------------|---------------------|--------|-----------|------|
| Gin Ganga                   | period 1 | 1928       | 1957     | No trend        | 19.5                | 5.7    | 1         | 5.7  |
| 2357750                     | period 2 | 1958       | 1989     | Monotonic trend | 26.3-11.3(- 0.5/yr) | 0.2    | ••        | 77   |
| Kali Gandaki (1)<br>2549350 | period 1 | 1964       | 1993     | Monotonic trend | 31.2-55.7(0.9/yr)   | 0.13   | ••        | 7.4  |
| Ganges R. (1)               | period 1 | 1934       | 1974     |                 | 1950                | 353    | 25        |      |
| 2646200                     | period 2 | 1975       | 1989     | Step trend      | 1130                | 442    | 50        | 380  |
| Godavari<br>2856900         | period 1 | 1902       | 1979     | Monotonic trend | 23.7-120(1.3/yr)    | 0.2/yr |           | 42   |
| Krishna<br>2854300          | period 1 | 1901       | 1979     | No trend        | 21.7                | 32.1   | 1.4       | 32   |

| River and GRDC # |            | Start Year | End Year | type of trend   | level                | sd   | sd (mean) |
|------------------|------------|------------|----------|-----------------|----------------------|------|-----------|
| Amu-Darya        | period 1   | 1931       | 1957     |                 | 1520                 | 250  | 36        |
| 2917100          | period 2   | 1958       | 1973     | Step trend      | 1150                 | 373  | 66        |
|                  | period 1-2 | 1931       | 1973     | Monotonic trend | 1660-1090(- 13.3/yr) | 4/уг |           |
| Biya             | period 1   | 1895       | 1910     |                 | 425                  | 95   | 25        |
| 2910470          | period 2   | 1911       | 1985     | Step trend      | 489                  | 96   | 11        |
| Yenisei          | period 1   | 1936       | 1972     |                 | 17.7                 | 1.2  | 0.2       |
| 2909150          | period 2   | 1973       | 1995     | Step trend      | 18.6                 | 1.4  | 0.3       |
| Syr-Darya        | period 1   | 1930       | 1960     |                 | 673                  | 169  | 15        |
| 2916200          | period 2   | 1961       | 1984     | Step trend      | 384                  | 214  | 21        |

1984

1970

1990

RMSE

.. 304 313 .. 96 .. 1.3 .. 190

191

••

83

Table 36 : Trends in mean yearly discharges ( Central Asia area).

1930

1933

1971

period 1-2

period 1

period 2

Naryn

2916850

Table 37 : Trends in maximum monthly discharges ( Central Asia area).

| River and GRDC # |            | Start Year | End Year | type of trend   | level             | sd    | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|-------------------|-------|-----------|------|
| Amu-Darya        | period 1   | 1931       | 1960     | -               | 3540              | 889   | 165       |      |
| 2917100          | period 2   | 1961       | 1973     | Step trend      | 2730              | 1010  | 270       | 930  |
|                  | period 1-2 | 1931       | 1973     | Monotonic trend | 3790-2760(-24/yr) | 12/yr |           | 957  |
| Tom (2)          | period 1   | 1965       | 1990     | No trend        | 4620              | 1190  | 234       | 1190 |
| 2910300          |            |            |          |                 |                   |       |           |      |
| Syr-Darya        | period 1   | 1930       | 1960     |                 | 1310              | 418   | 46        |      |
| 2916200          | period 2   | 1961       | 1984     | Step trend      | 761               | 343   | 41        | 386  |
|                  | period 1-2 | 1930       | 1984     | Monotonic trend | 1540-578(-18/yr)  | 3/yr  |           | 378  |
| Naryn            | period 1   | 1933       | 1973     |                 | 1010              | 297   | 47        |      |
| 2916850          | period 2   | 1974       | 1990     | Step trend      | 703               | 223   | 52        | 276  |
|                  | period 1-2 | 1933       | 1990     | Monotonic trend | 1070-766(-5/yr)   | 2/yr  |           | 299  |

Monotonic trend

Step trend

786-298(-8.4/yr)

393

316

1.5/yr

84

80

9.5

12

| River and GRDC # |            | Start Year | End Year | type of trend   | level             | sd      | sd (mean) | RMSE |
|------------------|------------|------------|----------|-----------------|-------------------|---------|-----------|------|
| Amu-Darya        | period 1   | 1931       | 1957     |                 | 516               | 86      | 6         |      |
| 2917100          | period 2   | 1958       | 1973     | Step trend      | 180               | 153     | 13        | 119  |
|                  | period 1-2 | 1931       | 1973     | Monotonic trend | 668-82(-14/уг)    | 1.2/yr  |           | 108  |
| Biya             | period 1   | 1895       | 1985     | Monotonic trend | 46-62(0.2/yr)     | 0.04    | ••        | 10.9 |
| 2910470          |            |            |          |                 |                   |         |           |      |
| Ob               | period 1   | 1930       | 1994     | Monotonic trend | 2530-3970(2.2/yr) | 3/уг    |           | 473  |
| 2912600          |            |            |          |                 |                   |         |           |      |
| Tom (1)          | period 1   | 1894       | 1985     | Monotonic trend | 56.7-80.8(2.5/уг) | 0.08/yr |           | 19.2 |
| 2910490          |            |            |          |                 |                   |         |           |      |
| Tom (2)          | period 1   | 1965       | 1979     |                 | 112               | 30      | 4.7       |      |
| 2910300          | period 2   | 1980       | 1990     | Step trend      | 149               | 23      | 3.9       | 27   |
|                  | period 1-2 | 1965       | 1990     | Monotonic trend | 102-155(2/yr)     | 0.75/yr |           | 28.6 |
| Tura             | period 1   | 1896       | 1985     | No trend        | 24.1              | 8.7     | 0.52      | 8.7  |
| 2912400          |            |            |          |                 |                   |         |           |      |
| Yenisei          | period 1   | 1936       | 1969     |                 | 3.92              | 0.44    | 0.02      |      |
| 2909150          | period 2   | 1970       | 1995     | Step trend      | 6.6               | 0.95    | 0.05      | 0.71 |
|                  | period 1-2 | 1936       | 1995     | Monotonic trend | 2.9-7.3(0.075/yr) | 0.006   |           | 0.79 |
| Syr-Darya        | period 1   | 1930       | 1964     |                 | 334               | 101     | 9         |      |
| 2916200          | period 2   | 1965       | 1984     | Step trend      | 133               | 105     | 12        | 102  |
|                  | period 1-2 | 1930       | 1984     | Monotonic trend | 411-104(-5.7/yr)  | l/yr    |           | 109  |
| Ural             | period 1   | 1915       | 1953     |                 | 38                | 19      | 1.5       |      |
| 2919200          | period 2   | 1954       | 1981     | Step trend      | 57.4              | 22.5    | 2         | 20   |
| Naryn            | period 1   | 1933       | 1990     | No trend        | 136               | 43      | 2.5       | 43   |
| 2916850          |            |            |          |                 |                   |         |           |      |

| Region              | Type of series | No<br>trend<br>detected | Upwards<br>stepwise<br>trend | Downwards<br>stepwise<br>trend | Monotonic<br>upwards<br>trend | Monotonic<br>downwards<br>trend |
|---------------------|----------------|-------------------------|------------------------------|--------------------------------|-------------------------------|---------------------------------|
| Oceania             | mean           | 15                      | 1                            | 3                              | 0                             | 2                               |
| Pacific area        | maximum        | 16                      | 1                            | 3                              | 0                             | 2                               |
| (19 rivers)         | minimum        | 15                      | 2                            | 2                              | 0                             | 0                               |
| Far East            | mean           | 15                      | 3                            | 4                              | 2                             | 6                               |
| Asia area           | maximum        | 18                      | 3                            | 2                              | 2                             | 4                               |
| (25 rivers)         | minimum        | 12                      | 10                           | 3                              | 5                             | 3                               |
| South-East          | mean           | 6                       | 0                            | 2                              | 0                             | 3                               |
| Asia area           | maximum        | 5                       | 0                            | 3                              | 0                             | 3                               |
| (9 rivers)          | minimum        | 2                       | 4                            | 3                              | 0                             | 3                               |
| Indian Subcontinent | mean           | 8                       | 3                            | 1                              | 1                             | 1                               |
| area                | maximum        | 9                       | 2                            | 0                              | 1                             | 1                               |
| (12 rivers)         | minimum        | 8                       | 0                            | 1                              | 2                             | 1                               |
| Central Asia        | mean           | 8                       | 2                            | 3                              | 0                             | 2                               |
| area                | maximum        | 10                      | 0                            | 3                              | 0                             | 3                               |
| (13 rivers)         | minimum        | 5                       | 2                            | 4                              | 4                             | 2                               |

Table 39: Detailed results, for each area, of the trend analysis applied to the 3 types of series investigated (mean yearly, monthly maximum and minimum discharge series).

| region       | decade | '00 | '10 | '20 | '30 | '40 | '50 | '60 | '70 | '80 | '90 |
|--------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Oceania      | downs  | 2   |     |     |     |     |     | 4   | 3   |     |     |
| Pacific      | ups    |     |     |     |     |     |     |     | 1   | 3   |     |
| Far East     | downs  |     |     |     |     |     | 4   | 6   | 3   | 1   |     |
| Asia         | ups    | 1   |     | 1   | 1   | 2   | 1   | 2   | 6   | 2   |     |
| South East   | downs  |     |     |     |     |     | 2   | 4   | 3   | 1   |     |
| Asia         | ups    |     |     |     |     |     |     | 3   | 1   |     |     |
| Indian       | downs  | 1   |     |     |     | 1   | 1   | 2   | 2   |     |     |
| Subcontinent | ups    | 1   |     |     |     |     |     | 2   | 1   | 1   |     |
| Central      | downs  |     |     |     |     |     | 2   | 4   | 2   |     |     |
| Asia         | ups    | 2   | 1   |     | 1   |     | 1   |     | 2   | 1   |     |

Table 40: Counts per decade of the occurrence of upwards and downwards trends in<br/>each of the 5 areas.

Table 41: Regional synthesis of the trend analysis.

| Region              | no trend | upwards trend | downwards trend |
|---------------------|----------|---------------|-----------------|
| Oceania-Pacific     | 15/19    | 1/19          | 3/19            |
| Far East Asia       | 15/25    | 3/25          | 7/25            |
| South East Asia     | 6/9      | 0/9           | 3/9             |
| Indian Subcontinent | 8/11     | 0/11          | 3/11            |
| Central Asia        | 8/13     | 2/13          | 3/13            |
| Total               | 52/77    | 6/77          | 19/77           |



Southern Oscillation Indices (SOI) and Identification of El Nino and La Nina years and months. Table 42a:

| lian Rah Mar Anr May lun Jul Ans Sen Oct Nov Dec |                    |       |      |      |      |       |       |       |       |            |       |       |        |       |              |       |       |      |       |      |      |       |       |       |      |      |      |      |       |       |      |      |      |      |       |       |      |      |       |       | tral SOI cold, high SOI | with 🛛 🖉 🖉 La Nina event |
|--------------------------------------------------|--------------------|-------|------|------|------|-------|-------|-------|-------|------------|-------|-------|--------|-------|--------------|-------|-------|------|-------|------|------|-------|-------|-------|------|------|------|------|-------|-------|------|------|------|------|-------|-------|------|------|-------|-------|-------------------------|--------------------------|
| Vagr                                             | 1918               | 1919  | 1920 | 1921 | 1922 | 1923  | 1924  | 1925  | 1926  | 1927       | 1928  | 1929  | 1930   | 1931  | 1932         | 1933  | 1934  | 1935 | 1936  | 1937 | 1938 | 1939  | 1940  | 1941  | 1942 | 1943 | 1944 | 1945 | 1946  | 1947  | 1948 | 1949 | 1950 | 1951 | 1952  | 1953  | 1954 | 1955 | 1956  | 1957  | ıal, neut               | vear, mo                 |
|                                                  |                    |       |      |      |      | _     |       |       |       |            |       |       |        |       |              |       |       |      |       |      |      | -     |       | _     |      |      | _    |      |       |       |      |      |      |      |       |       |      |      |       |       | nom                     | ~                        |
| tyne of year                                     |                    |       |      |      |      |       |       |       |       |            |       |       |        |       |              |       |       |      |       |      |      |       |       |       |      |      |      |      |       |       |      |      |      |      |       |       |      |      |       |       |                         |                          |
|                                                  |                    |       |      |      |      |       |       |       |       |            |       |       |        |       |              |       |       |      |       |      |      |       |       |       |      |      |      |      |       |       |      |      |      |      |       |       |      |      |       |       |                         |                          |
| 2                                                | 2 <i>°</i>         | -9.1  | 9.8  | 8.2  | 11.8 | 2.1   | 5.2   | L-    | 6,2   | <i>T.T</i> | 11.8  | 5.7   | -1.4   | 4.7   | 3.2          | 8.2   | -2.4  | 4    | 0.6   | 6,7  | 13.8 | -8.6  | -29.4 | -8.6  | 13.8 | -8.6 | 4.2  | 6.7  | -5.5  | 5.2   | -5.5 | 7.7  | 23   | ¢,   | -12.6 | 4     | 12.8 | 9.3  | 10.3  | -3.5  | No SOI                  | o event                  |
| Now                                              | 13                 | -11.3 | -0.1 | 8.5  | 8.5  | -12.6 | 11.8  | -9.3  | 1.3   | œ          | 2.6   | 11.1  | 1.9    | 4.7   | -4.7         | 7.2   | 13.1  | 3.9  | -13.9 | 7    | 1.9  | ۶ې    | -6.7  | -9.3  | 4    | 3.9  | -67  | -3,4 | -1.4  | 9.2   | 4.6  | -9   | 12.5 | 3.4  | -0.7  | -2    | 3.9  | 15.1 | 1.9   | -11.9 | hot, lc                 | El Nin                   |
| ð                                                | ہ <mark>ا</mark> ئ | -10.5 | 4.3  | 9.7  | 6.1  | -6.2  | 7.9   | -12.9 | 4.2   | 4.3        | 9.1   | 7.9   | 3.6    | -12.9 | 4.3<br>6     | 3.6   | 4.2   | 7.3  | -0.1  | -2.5 | 12.8 | -14.7 | -18.4 | -20.2 | 8.5  | 9.1  | -8.6 | 2.4  | -12.3 | -1.9  | 6.1  | 5.4  | 17.1 | øç   | 1.8   | -0.1  | 1.8  | 15.2 | 18.3  | -1.3  |                         |                          |
| Con                                              | -8.2               | -5,8  | 5.1  | 5.1  | 5.1  | -14.8 | 8.1   | -6.4  | 1.4   | -0.4       | 8.1   | -0.4  | -7     | 5.1   | 8.8 <u>-</u> | 2     | -6.4  | 6.3  | 2.6   | 0.8  | 7.5  | -9.4  | -19.6 | -8.2  | 8.7  | 5.7  | 2.6  | 8.7  | -16   | 11.7  | -7.6 | 61   | 6.9  | L-   | -3.4  | -13   | 4.5  | 14.1 | 0.2   | -10.6 |                         |                          |
| V                                                | 4.4                | -6'9  | 5.3  | -6.9 | -1.2 | -18.5 | 10.4  | -10.8 | -7.6  | ŝ.         | 9.8   | 0.1   | -1.8   | 0.1   | -6.9         | -0.5  | -22.4 | 2.1  | -8.9  | 3,3  | 13   | -0.5  | -18.5 | -19.1 | 4    | 7.8  | 3.3  | 11.7 | 4.4   | 7.2   | 4.4  | 4.4  | 12.3 | -0.5 | -3.7  | -17.2 | 10.4 | 14.9 | 11    | 5.6-  |                         |                          |
| 3                                                | -14.1              | 6'8-  | 9.4  | 2.9  | 2.2  | -11.5 | 7.4   | -13.4 | -1    | 6.1        | -0.4  | 1.6   | 4<br>0 | 9.4   | γ            | 3.5   | 2.9   | -0.4 | 4.2   | -5.6 | 18.5 | 8.1   | -15.4 | -20.6 | 7    | 2.9  | -8.9 | 3.5  | -10.2 | 9.4   | 0.9  | -1.7 | 21.1 | -8.2 | 3.5   | 7     | 4.2  | 19.2 | 12.6  | 0.9   |                         |                          |
| <u> </u>                                         | 4.7                | -10.4 | 6.6  | 22   | 5.8  | 1     | 8.3   | 4.7   | -7.1  | 8.3        | -7.9  | 1     | -5.5   | 18.8  | 4.7          | -3.9  | 10.7  | -2.3 | -1.5  | 3.4  | 18   | -1.5  | -19.3 | -14.4 | 8.3  | -7.9 | -3.9 | 8.3  | -9.6  | 2.6   | 4.7  | -12  | 26.9 | ŝ    | 7,4   | -2.3  | -1.5 | 16.4 | 12.3  | -2.3  |                         |                          |
| Mar                                              | 10                 | -7.4  | -2.7 | 2.1  | -5.1 | 21    | 11.5  | -1.1  | -2.7  | Ŷ          | -2.7  | -12.2 | 2.1    | 13.1  | 2.8          | 9     | -7.4  | -6.6 | 4.4   | -0.3 | 13.1 | -1.1  | -14.5 | -6.6  | 5.2  | 2.8  | 1.1- | -0.3 | -11.4 | -13.7 | 3.6  | -5.8 | 7.6  | -6.6 | 6     | -31.9 | 4.4  | 13.1 | 17.9  | -12.2 |                         |                          |
|                                                  | 16.8               | ċ     | 0.3  | -7.1 | -5.5 | 8.6   | -15.4 | 14.4  | -7.1  | 6.9        | 11.9  | 45    | -3.8   | 8.6   | -2.1         | 3.6   | 6.1   | 2.8  | 22.6  | 7    | 3.6  | 9.4   | -9.6  | -11.2 | -5.5 | 13.5 | -5.5 | -7.1 | -9.6  | 4.6   | 2.8  | 1.2  | 16.8 | -1.3 | -8'8- | -0.5  | 6.9  | ę,   | 11.11 | 1.2   |                         |                          |
| Ne.                                              | -2                 | -12.8 | 4.1  | 8.9  | 5.6  | 8.9   | 2.4   | 14.9  | -13.3 | 18.1       | 13.8  | 5.1   | 1.8    | 5.6   | -2.5         | -2    | 0.2   | 12.2 | 1.8   | 6.2  | -3.6 | 11.6  | -10.6 | -10.6 | -5.8 | 4    | 5.6  | 13.2 | -2    | 11.6  | 4.1  | 5.6  | 17.6 | -1.4 | 0.2   | -5.8  | -0.9 | 2.9  | 9.4   | -0.9  |                         |                          |
| 122                                              | 16.6               | -11.2 | -1.7 | 6.7  | 9.1  | 4.4   | 1.1   | 13.8  | -14.5 | 1.1        | 10.5  | 18    | LL .   | -14.9 | -3.6         | 4.9   | 0.1   | 4.6  | 0.6   | γŗ   | 3.4  | 7.7   | 4.1   | -15.4 | -3.6 | 10.5 | 3.9  | 6.3  | 4.4   | 41    | -2.7 | 2    | 17.6 | 9.6  | -7.9  | -9    | -3.6 | 15.2 | 12.4  | -2.2  |                         |                          |
|                                                  | 14.6               | -14.9 | 1.8  | 10.8 | œ    | 5.6   | -5.4  | 5.6   | -5.4  | 5.1        | -10.1 | 16    | 12.7   | L     | 1.8          | -11.1 | 6.5   | 6.5  | -2    | 9.4  | 7.5  | 17    | -0.1  | -9.7  | -13  | 9.4  | -8.2 | 5.1  | -2.5  | 4.9   | ų.   | -73  | 51   | 16.5 | -9.2  | 2.2   | 9    | -5.4 | 11.3  | 5.6   |                         |                          |
|                                                  | 1918               | 1919  | 1920 | 1921 | 1922 | 1923  | 1924  | 1925  | 1926  | 1927       | 1928  | 1929  | 1930   | 1931  | 1932         | 1933  | 1934  | 1935 | 1936  | 1937 | 1938 | 1939  | 1940  | 1941  | 1942 | 1943 | 1944 | 1945 | 1946  | 1947  | 1948 | 1949 | 1950 | 1951 | 1952  | 1953  | 1954 | 1955 | 1956  | 1957  |                         |                          |

Southern Oscillation Indices (SOI) and Identification of El Nino and La Nina years and months. Table 42b:

| Ver Ton Bah Mar Anr May Tun Tul Aug San Oct Nov Dec |            |       |                  | 1961  | 1962 | 1963             | 1964 | 1965  | 1966  | 1961 | 1968 | 1969  | 1970  | 1971 | 1972  | 1973  | 1974 | 1975 | 1976    | 1977 1978 1978 1978 1978 1978 1978 1978 | 1978  | 1979 | 1980  | 1981  | 1982  | 1983    | 1984 | 1985 | 1986  | 1987     | 1988 |      | 1990  |       | 1992   | 1993  |       | 1995  | 1996 |       |   | (, neutral SOI cold, high SOI | ar, month 🛛 💮 💴 🛛 La Nina event |
|-----------------------------------------------------|------------|-------|------------------|-------|------|------------------|------|-------|-------|------|------|-------|-------|------|-------|-------|------|------|---------|-----------------------------------------|-------|------|-------|-------|-------|---------|------|------|-------|----------|------|------|-------|-------|--------|-------|-------|-------|------|-------|---|-------------------------------|---------------------------------|
|                                                     |            |       |                  |       |      |                  |      |       |       |      |      |       |       |      |       |       |      |      |         |                                         |       |      |       |       |       |         |      |      |       |          |      |      |       |       |        |       |       |       |      |       | ſ | norma                         | ye                              |
| tring of ve                                         |            |       |                  |       |      | _                |      |       |       |      |      |       |       |      |       |       |      |      |         |                                         |       |      |       |       |       |         |      |      |       |          |      |      |       |       |        |       |       |       |      |       |   |                               |                                 |
|                                                     | , y        | , s   | 6.7              | 13.8  | 0.6  | -11.6            | ŝ    | 1.6   | 4     | -5.5 | 2.1  | 3.7   | 17.4  | 2.1  | -12.1 | 16.9  | -0.9 | 2.61 | ę-<br>6 | -10.6                                   | -0.9  | -7.5 | -0.9  | 4.7   | -21.3 | 0.1     | -1.4 | 2.1  | -13.6 | 4.5<br>2 | 10.8 | ş    | -2.4  | -16.7 | -5.5   | 1.6   | -11.6 | -5.5  | 7.2  | -9.1  |   | w SOI                         | o event                         |
| No:                                                 | 47         | -     | 7.2              | 7.2   | 5.2  | <del>.</del> 9.3 | 2.6  | -17.9 | -0.1  | 4    | -3.4 | -0.1  | 19.7  | 7.2  | -3.4  | 31.6  | -1.4 | 13.8 | 9.8     | -14.6                                   | 7     | -4.7 | -3,4  | 2.6   | -31.1 | -0.7    | 3.9  | -1.4 | -13.9 | -1.4     | 21   | 7    | -5.3  | -7.3  | -7.3   | 0.6   | -7.3  | 1.3   | -0.1 | -15.2 |   | hot, lo                       | Et Nine                         |
| 1                                                   | 8 -        | C 4   | 4.4<br>-0.7      | ŝ     | 10.3 | -12.9            | 12.8 | -11.1 | -2.5  | -0.1 | -1.9 | -11.7 | 10.3  | 17.7 | -11.1 | 57    | 8.5  | 17.7 | e,      | -12.9                                   | -6.2  | -2.5 | -1.9  | Ś     | -20.2 | 4.2     | ċ    | -5.6 | 6.1   | -5.6     | 14.6 | 7.3  | 1.8   | -12.9 | -17.2  | -13.5 | -14.1 | -1.3  | 4.2  | -17.8 |   |                               |                                 |
| 5.00                                                | 440        | 60    | 0.2<br>6,9       | 0.8   | 5.1  | -5.2             | 14.1 | -14.2 | -2.2  | 5.1  | -2.8 | -10.6 | 12.9  | 15.9 | -14.8 | 13.5  | 12.3 | 22.5 | -13     | -9.4                                    | 0.8   | 1.4  | -5.2  | 7.5   | -21.4 | 6'6     | 7    | 0.2  | -5.2  | -11.2    | 20.1 | 5.7  | -7.6  | -16.6 | 0.8    | -7.6  | -17.2 | 3.2   | 6.9  | -14.8 |   |                               |                                 |
|                                                     | 9ne<br>1 8 | e v   | 6.6              | 0.1   | 4.6  | -2.4             | 14.3 | -11.4 | 4     | 5.9  | 0.1  | 4.4   | 4     | 14.9 | -8.9  | 12.3  | 6.6  | 20.7 | -12.1   | -12.1                                   | 1.4   | Ŷ    | 1.4   | 5.9   | -23.6 | 0.1     | 2.7  | 8.5  | -7.6  | -14      | 14.9 | -6.3 | ċ.    | -7.6  | 1.4    | -14   | -17.2 | 0.8   | 4.6  | -19.8 |   |                               |                                 |
| 3                                                   | ,<br>,     | 1     | - <del>4</del> 8 | 2.2   | -0.4 | -1               | 6.8  | -22.6 | -1    | 1.6  | 7.4  | -6.9  | -5.6  | 1.6  | -18.6 | 6.1   | 12   | 21.1 | -12.8   | -14.7                                   | 6.1   | -8.2 | -1.7  | 9.4   | -19.3 | -7.6    | 2.2  | -2.3 | 2.2   | -18.6    | 11.3 | 9.4  | 5.5   | -1.7  | -6.9   | -10,8 | -18   | 4.2   | 6.8  | -9.5  |   |                               |                                 |
|                                                     | 6          | 4.0   | -2.3<br>-2.3     | -3.1  | s    | -9.6             | 7.4  | -12.8 | 1     | 6.6  | 12.3 | -0.6  | 9.9   | 2.6  | -12   | 12.3  | 2.6  | 15.5 | 0.2     | -17.7                                   | 5.8   | 5.8  | -4.7  | 11.5  | -20.1 | -3.1    | -8.7 | -9.6 | 10.7  | -20.1    | -3.9 | 7.4  | -     | -5.5  | -12.8  | -16   | -10.4 | -1.5  | 13.9 | -24.1 |   |                               |                                 |
|                                                     | C 8-       | 100   | 5.2<br>5.2       | 1.3   | 12.3 | 2.8              | 2.8  | -0.3  | 6-    | -3.5 | 14.7 | -6.6  | 2.1   | 9.2  | -16.1 | 2.8   | 10.7 | 9    | 2.1     | -11.4                                   | 16.3  | 3.6  | -3.5  | 7.6   | -8.2  | 9       | -0.3 | 2.8  | -6.6  | -21.6    | 10   | 14.7 | 13.1  | -19.3 | 0.5    | -8.2  | -13   | 6-    | 1.3  | -22.4 |   |                               |                                 |
|                                                     |            | 17    | 0.0<br>8.7       | 9.4   | 1.2  | 6.1              | 13.5 | -12.9 | -7.1  | ų    | ÷    | -8.8  | 4.6   | 22.6 | -5.5  | -2.1  | 1.11 | 14.4 | 1.2     | -9.6                                    | -7.9  | -5.5 | -12.9 | -5.5  | -3.8  | -17     | 2    | 14.4 | 1.2   | -24.4    | -1.3 | 21   | -0.5  | -12.9 | -18.7  | -21.1 | -22.8 | -16.2 | 7.8  | -16.2 |   |                               |                                 |
|                                                     | 1 4        |       | 8.4<br>5.6       | -20.9 | -1,4 | 7.3              | 8.4  | 2.9   | -13.9 | 7.8  | ŵ    | 1.8   | 1.8   | 19.2 | 2.4   | 0.8   | 20.3 | 11.6 | 13.2    | -9.5                                    | -5,8  |      | -8.5  | -16.6 | 2.4   | -28     | -5.8 | -7   | 0.8   | -16.6    | 2.4  | 6.7  | -8.5  | -10.6 | -24.2  | -8.5  | -10.6 | 3.5   | 6.2  | -8.5  |   |                               |                                 |
|                                                     | V O        | 3 3   | -14              | 6.3   | 5.3  | 3                | -0.3 | 1.6   | 4.1   | 12.9 | 9.6  | 6.9-  | -10.7 | 15.7 | 8.2   | -13.5 | 16.2 | 5.3  | 12.9    | T.T                                     | -24.4 | 6.7  | 1.1   | -3.2  | 0.6   | 5 -33.3 | 5.8  | 6.7  | -10.7 | -12.6    | ċ    | 1.9  | -17.3 | 0.6   | t -9.3 | 6.7-  | 0.6   | -2.7  | 1.1  | 13.3  |   |                               |                                 |
|                                                     |            | 1.01- | -9-<br>-0-3      | -2.5  | 17   | 9.4              | 4    | 4     | -12   | 14.6 | 4.1  | -13.5 | -10.1 | 2.7  | 3.7   | ς     | 20.8 | 4.9  | 11.8    | 4                                       | ¢,    | 4    | 3.2   | 2.7   | 9.4   | -30.6   | 1.3  | -3.5 | 80    | -6.3     | -1.1 | 13.2 | -1.1  | 5.1   | -25.4  | -8.2  | -1.6  | 4     | 8.4  | 4.1   |   |                               |                                 |
|                                                     | 1058       | 0201  | 960<br>1960      | 1961  | 1962 | 1963             | 1964 | 1965  | 1966  | 1961 | 1968 | 1969  | 1970  | 1971 | 1972  | 1973  | 1974 | 1975 | 9761    | 1977                                    | 1978  | 1979 | 1980  | 1981  | 1982  | 1983    | 1984 | 1985 | 1986  | 1987     | 1988 | 1989 | 0661  | 1661  | 1992   | 1993  | 1994  | 1995  | 1996 | 1997  |   |                               |                                 |

Southern Oscillation Indices (SOI) and Identification of El Nino and La Nina years and months. Table 42c:

| River            | Year               |       |       | Percentiles |        |        |
|------------------|--------------------|-------|-------|-------------|--------|--------|
| name             | type               | 10%   | 30%   | 50%         | 70%    | 90%    |
| Darling River    | La Nina            | 1211  | 3957  | 7845        | 14606  | 51451  |
| 5204255          | Neutral            | 413   | 1316  | 3038        | 7090   | 19440  |
|                  | El Nino            | 133   | 522   | 1203        | 4079   | 14044  |
| Fitzroy          | La Nina            | 1,6   | 6,7   | 19,4        | 110,7  | 823,2  |
| 5101301          | Neutral            | 0,4   | 2,9   | 15,1        | 52,0   | 220,8  |
|                  | El Nino            | 0,3   | 1,4   | 8,8         | 26,2   | 149,6  |
| Daly             | La Nina            | 10,9  | 18,4  | 33,3        | 86,4   | 519,5  |
| 5708145          | Neutral            | 16,7  | 22,6  | 32,2        | 70,2   | 618,9  |
|                  | El Nino            | 16,0  | 19,7  | 25,7        | 75,2   | 712,8  |
| Herbert River    | La Nina            | 6,3   | 15,7  | 30,9        | 97,2   | 331,2  |
| 5101161          | Neutral            | 4,3   | 12,5  | 24,3        | 62,8   | 330,6  |
|                  | El Nino            | 3,3   | 8,2   | 19,3        | 57,4   | 325,5  |
| Mary River (1)   | La Nina            | 0,0   | 0,1   | 2,3         | 23,1   | 111,2  |
| 5708185          | Neutral            | 0,0   | 0,1   | 1,9         | 14,9   | 167,8  |
|                  | El Nino            | 0,0   | 0,0   | 0,5         | 15,1   | 130,9  |
| Mary River (2)   | La Nina            | 2,2   | 5,8   | 12,6        | 30,9   | 119,3  |
| 5101381          | Neutral            | 1,2   | 3,4   | 7,3         | 17,2   | 89,5   |
|                  | El Nino            | 0,9   | 2,9   | 5,9         | 16,1   | 70,0   |
| Mitchell River   | La Nina            | 3,0   | 13,0  | 25,5        | 50,0   | 89,0   |
| 5302242          | Neutral            | 2,0   | 6,0   | 15,0        | 33,0   | 70,0   |
|                  | El Nino            | 2,0   | 5,0   | 11,0        | 22,0   | 52,0   |
| Avoca River      | La Nina            | 0,0   | 0,0   | 3,0         | 17,0   | 107,0  |
| 5304080          | Neutral            | 0,0   | 0,0   | 0,0         | 3,0    | 22,0   |
|                  | El Nino            | 0,0   | 0,0   | 1,0         | 3,0    | 25,0   |
| Huon River       | La Nina            | 18,0  | 42,0  | 68,5        | 111,0  | 171,0  |
| 5803600          | Neutral            | 24,0  | 49,0  | 75,0        | 98,5   | 152,5  |
|                  | El Nino            | 24,0  | 50,0  | /6,5        | 100,0  | 153,0  |
| Murrumbidge      | La Nina            | /4,0  | 108,0 | 489,5       | 1226,0 | 2818,0 |
| 5204105          | FI NERO            | 57,0  | 167,0 | 378,0       | 829,0  | 2095,0 |
| Neurobaida D     |                    | 43,0  | 123,0 | 1024.5      | 2701.0 | 6707.0 |
| Nymbolda R       | La Mina<br>Noutrol | 374,0 | 676.0 | 1234,3      | 2701,0 | 5751.0 |
| 5202040          | Fl Nino            | 282.0 | 492.0 | 836.5       | 2052,0 | 3706.0 |
| Sementine P      | La Nina            | 282,0 |       | 1.0         | 4.0    | 16.0   |
| 5606145          | Neutral            | 0,0   | 0,0   | 1,0         | 4,0    | 16.0   |
| 5000145          | Fl Nino            | 0,0   | 0,0   | 0.0         | 1.0    | 13.0   |
| Tinindie         | La Nina            | 1.0   | 1.0   | 4.0         | 11.0   | 37.0   |
| 5762050          | Neutral            | 0.0   | 1,0   | 2.0         | 7.0    | 19.0   |
| 5762050          | El Nino            | 0.0   | 1.0   | 1.0         | 4.0    | 30.0   |
| Riviere Des Lacs | La Nina            | 0.0   | 2.0   | 3.0         | 5.0    | 11.0   |
| 5762700          | Neutral            | 0.0   | 2.0   | 3.0         | 7.0    | 14.0   |
|                  | El Nino            | 0,0   | 2,0   | 3,0         | 5,0    | 10.0   |
| Mataura          | La Nina            | 19,3  | 37,7  | 52,9        | 67,6   | 86,3   |
| 5868300          | Neutral            | 27,1  | 42,2  | 56,2        | 73,5   | 108,0  |
|                  | El Nino            | 35,2  | 53,8  | 69,2        | 92,1   | 134,0  |
| Motu             | La Nina            | 38,0  | 55,0  | 94,5        | 132,0  | 202,0  |
| 5864150          | Neutral            | 30,0  | 53,0  | 77,5        | 104,0  | 148,0  |
|                  | El Nino            | 23,0  | 40,0  | 74,5        | 106,0  | 161,0  |
| Ongarue          | La Nina            | 8,5   | 18,1  | 30,4        | 45,4   | 75,9   |
| 5865550          | Neutral            | 11,7  | 19,6  | 27,7        | 38,2   | 59,0   |
|                  | El Nino            | 12,4  | 19,1  | 26,4        | 38,8   | 59,2   |
| Hurunui          | La Nina            | 22,0  | 33,0  | 42,5        | 65,0   | 86,0   |
| 5867500          | Neutral            | 25,0  | 36,0  | 42,0        | 56,0   | 78,0   |
|                  | El Nino            | 27,0  | 39,0  | 44,0        | 56,0   | 88,0   |
| Ahuriri          | La Nina            | 10,8  | 14,2  | 18,5        | 24,3   | 36,3   |
| 5868200          | Neutral            | 11,9  | 16,6  | 22,6        | 30,3   | 29,5   |
|                  | El Nino            | 11,2  | 15,5  | 20,7        | 26,6   | 40.6   |

#### Table 43: Distribution, by type of years, of runoffs of rivers in the Oceania Pacific area.

| River       | Year               | [      |        | Percentiles |         |         |
|-------------|--------------------|--------|--------|-------------|---------|---------|
| name        | type               | 10%    | 30%    | 50%         | 70%     | 90%     |
| Tone        | La Nina            | 95,0   | 134,0  | 188,0       | 270,0   | 437,0   |
| 2588550     | Neutral            | 93,0   | 146,0  | 200,5       | 277,0   | 432,0   |
|             | El Nino            | 102,0  | 128,0  | 174,5       | 279,0   | 551,0   |
| Ishıkari    | La Nina            | 209,0  | 317,0  | 403,5       | 549,0   | 1133,0  |
| 2587100     | Neutral            | 179,0  | 255,5  | 311,5       | 428,5   | 880,5   |
|             | El Nino            | 226,0  | 285,0  | 357,0       | 444,0   | 1128,0  |
| Shinano     | La Nina            | 269,0  | 345,0  | 411,0       | 560,0   | 868,0   |
| 2589500     | Neutral            | 256,0  | 334,0  | 411,0       | 562,0   | 876,0   |
|             | El Nino            | 257,0  | 336,0  | 468,0       | 616,0   | 1130,0  |
| Yodo        | La Nina            | 112,0  | 163,0  | 207,5       | 310,0   | 516,0   |
| 2588200     | Neutral<br>El Nino | 96,0   | 155,0  | 195,5       | 284,0   | 423,0   |
| <u>(1)</u>  | El Nino            | 130,0  | 165,0  | 207,0       | 311,0   | /03,0   |
|             | La Nina<br>Neutral | 37,0   | 50,0   | 77,0        | 112,0   | 216,0   |
| 2390100     | FLNing             | 43,0   | 55,0   | 72,0        | 103,0   | 234,0   |
| Chanaille   | La Nino            | 7740   | 12500  | 22200       | 22000   | 42000   |
| 2181800     | Neutral            | 7310   | 12300  | 22300       | 32900   | 42000   |
| 2181800     | El Nino            | 7510   | 12700  | 21303       | 32000   | 42130   |
| Songhua     | La Nina            | 140.0  | 481.0  | 011.0       | 1500.0  | 2500.0  |
| 2106500     | Neutral            | 140,0  | 461,0  | 913,0       | 1/30 0  | 2590,0  |
| 2100500     | Fl Nino            | 158.0  | 433,0  | 881.0       | 1450.0  | 2030,0  |
| Vonadin     | La Nina            | 9.0    | 17.0   | 28.5        | 51.0    | 82.0    |
| 2178300     | Neutral            | 10.0   | 15.0   | 20,5        | 41.0    | 77.0    |
| 2170500     | El Nino            | 11.0   | 17.0   | 24,5        | 38 5    | 77.0    |
| linghe      | La Nina            | 18.0   | 28.0   | 38.0        | 59.0    | 120.0   |
| 2180500     | Neutral            | 19.0   | 28,0   | 38.0        | 56.0    | 124.0   |
| 2100000     | El Nino            | 19.0   | 28.0   | 36.0        | 56.0    | 145.0   |
| Wuijang     | La Nina            | 313.0  | 424.0  | 890.0       | 1500.0  | 2260.0  |
| 2181400     | Neutral            | 300.5  | 422.5  | 804.0       | 1375.0  | 2623.5  |
|             | El Nino            | 282,0  | 454,0  | 860,5       | 1440,0  | 2030,0  |
| Huanghe     | La Nina            | 498,0  | 774,0  | 1075.0      | 1767,0  | 3150.0  |
| 2180800     | Neutral            | 420,0  | 740,0  | 1035,0      | 1680,0  | 3440,0  |
|             | El Nino            | 513,5  | 685,0  | 929,5       | 1361,0  | 2870,0  |
| Beijiang    | La Nina            | 275,0  | 483,0  | 764,5       | 1420,0  | 2620,0  |
| 2186900     | Neutral            | 251,0  | 389,0  | 721,0       | 1140,0  | 2330,0  |
|             | El Nino            | 239,0  | 415,0  | 765,0       | 1240,0  | 2180,0  |
| DongjiaI    | La Nina            | 296,0  | 371,0  | 619,5       | 922,0   | 1550,0  |
| 2186950     | Neutral            | 253,0  | 374,0  | 588,5       | 867,0   | 1370,0  |
|             | El Nino            | 296,0  | 456,0  | 603,5       | 847,0   | 1480,0  |
| Yana        | La Nina            | 0,0    | 2,0    | 44,5        | 960,0   | 2830,0  |
| 2998100     | Neutral            | 0,0    | 2,0    | 56,0        | 1180,0  | 3300,0  |
|             | El Nino            | 0,0    | 6,0    | 81,0        | 1290,0  | 3050,0  |
| Penzhina    | La Nina            | 23,0   | 44,0   | 149,0       | 603,0   | 1650,0  |
| 2901300     | Neutral            | 20,0   | 35,0   | 119,5       | 745,0   | 2150,0  |
|             | El Nino            | 21,0   | 32,0   | 123,0       | 741,0   | 1960,0  |
| Indigirka   | La Nina            | 10,0   | 28,0   | 144,0       | 2270,0  | 5340,0  |
| 2998400     | Neutral            | 10,5   | 31,0   | 126,0       | 2035,0  | 6192,0  |
|             | El Nino            | 9,0    | 29,0   | 132,0       | 1980,0  | 5228,0  |
| Lena        | La Nina            | 1230,0 | 2270,0 | 3495,0      | 21900,0 | 4/958,0 |
| 2903420     | FINID              | 1410,0 | 2340,0 | 2075 5      | 21300,0 | 48400,0 |
| Shillen     | La Nine            | 1300,0 | 2411,0 | 260.5       | 540.0   | 1160.0  |
| 2906200     | Neutral            | 4,0    | 35.0   | 268.5       | 575.0   | 1060.0  |
| 2/00200     | El Nino            | 5.0    | 38.0   | 198 5       | 518.0   | 1100.0  |
| Kamchatka   | La Nina            | 388.0  | 446.0  | 571.5       | 851.0   | 1730.0  |
| 2902800     | Neutral            | 370.0  | 427.0  | 578.0       | 868.0   | 1610.0  |
|             | El Nino            | 378,0  | 445,0  | 575,0       | 910,0   | 1550,0  |
| Amur(1)     | La Nina            | 637.0  | 1900.0 | 6115.0      | 13900.0 | 19400.0 |
| 2906700     | Neutral            | 707,0  | 1770,0 | 6475,0      | 12800.0 | 19100.0 |
|             | El Nino            | 632,0  | 1820,0 | 6570,0      | 12700,0 | 18700,0 |
| Amur(2)     | La Nina            | 1200   | 2540   | 9105        | 16200   | 22000   |
| 2906900     | Neutral            | 1120   | 2480   | 8040        | 14029   | 21200   |
|             | El Nino            | 1140   | 2370   | 9315        | 16000   | 21900   |
| Li-Wu       | La Nina            | 1219,0 | 1685,0 | 2361,0      | 3252,0  | 9001,0  |
| 2385760     | Neutral            | 1116,5 | 1538,5 | 2261,5      | 3688,5  | 7064,5  |
|             | El Nino            | 923,0  | 1281,5 | 1756,5      | 2625,5  | 6733,0  |
| Yufeng      | La Nina            | 499,0  | 760,0  | 1097,0      | 1607,0  | 3195,0  |
| 2385500     | Neutral            | 438,0  | 783,0  | 1153,5      | 2037,0  | 4346,0  |
|             | El Nino            | 396,0  | 580,0  | 870,0       | 1490,0  | 4459,0  |
| Sandimen    | La Nina            | 55,0   | 116,0  | 560,0       | 4130,0  | 9726,0  |
| 2385400     | Neutral            | 66,0   | 94,0   | 755,5       | 3477,0  | 9878,0  |
|             | El Nino            | 77,0   | 118,0  | 340,0       | 2704,0  | 14464,0 |
| Xintadaqiao | La Nina            | 12/0,0 | 1891,0 | 3510,0      | 7194,0  | 14981,0 |
| 2385200     | El Nimo            | 1045,0 | 1334,0 | 2819,5      | 1381,0  | 13082,0 |
|             | ET INIBO           | 1008,0 | 1770,0 | 3300,0      | 0700,0  | 24000,U |

 Table 44:
 Distribution, by type of years, of runoffs of rivers in the Far East Asia area.

| River     | Year    |        |        | Percentiles |        |         |
|-----------|---------|--------|--------|-------------|--------|---------|
| name      | type    | 10%    | 30%    | 50%         | 70%    | 90%     |
| Pampanga  | La Nina | 23,0   | 47,0   | 103,0       | 264,0  | 590,0   |
| 5654500   | Neutral | 23,0   | 44,0   | 105,5       | 266,0  | 631,0   |
|           | El Nino | 25,0   | 68,0   | 132,0       | 294,0  | 559,0   |
| Bonga     | La Nina | 1,0    | 2,0    | 5,5         | 23,0   | 53,5    |
| 5654100   | Neutral | 2,0    | 3,0    | 9,0         | 27,0   | 93,0    |
|           | El Nino | 1,0    | 3,0    | 6,5         | 31,0   | 76,0    |
| Kelanatan | La Nina | 324,0  | 387,5  | 459,0       | 624,0  | 1102,0  |
| 5223100   | Neutral | 199,0  | 300,0  | 405,5       | 585,0  | 966,0   |
|           | El Nino | 206,0  | 341,0  | 447,0       | 618,0  | 908,0   |
| Mekong(3) | La Nina | 1620,0 | 2320,0 | 4447,0      | 9850,0 | 20630,0 |
| 2969100   | Neutral | 1450,0 | 2130,0 | 4311,5      | 10890  | 20781   |
|           | El Nino | 1580,0 | 2000,0 | 4340,5      | 9760,0 | 18970,0 |
| Nam Chi   | La Nina | 13,0   | 54,0   | 114,0       | 298,0  | 656,0   |
| 2969150   | Neutral | 16,0   | 58,0   | 112,5       | 334,0  | 715,0   |
|           | El Nino | 11,0   | 56,5   | 94,5        | 224,0  | 667,0   |
| Nam Mun   | La Nina | 47,5   | 87,0   | 238,0       | 619,5  | 1621,0  |
| 2969200   | Neutral | 48,0   | 94,0   | 206,0       | 846,0  | 1910,0  |
|           | El Nino | 26,5   | 85,0   | 154,0       | 543,0  | 2178,0  |
| Nan       | La Nina | 24,0   | 39,0   | 75,0        | 230,0  | 546,0   |
| 2964080   | Neutral | 19,0   | 43,0   | 81,5        | 182,0  | 567,0   |
|           | El Nino | 20,0   | 34,0   | 60,0        | 140,0  | 368,0   |
| Mekong(1) | La Nina | 839,0  | 1150,0 | 1966,0      | 3370,0 | 6540,0  |
| 2969010   | Neutral | 845,0  | 1120,0 | 1830,0      | 3731,0 | 5750,0  |
|           | El Nino | 861,0  | 1100,0 | 1905,0      | 3480,0 | 5601,0  |
| Mekong(2) | La Nina | 1460,0 | 2160,0 | 4450,0      | 9650,0 | 19290,0 |
| 2969095   | Neutral | 1450,0 | 2210,0 | 4030,0      | 9673,0 | 16690,0 |
|           | El Nino | 1550,0 | 2140,0 | 3850,0      | 8840,0 | 15750,0 |

 Table 45:
 Distribution, by type of years, of runoffs of rivers in the South East Asia area.

Table 46:

Distribution, by type of years, of runoffs of rivers in the Indian Subcontinent area.

| River            | Year    |        |        | Percentiles |        | ······································ |
|------------------|---------|--------|--------|-------------|--------|----------------------------------------|
| name             | type    | 10%    | 30%    | 50%         | 70%    | 90%                                    |
| Mahaweli Ganga   | La Nina | 16,5   | 32,5   | 56,0        | 94,5   | 143,0                                  |
| 2357500          | Neutral | 15,0   | 35,0   | 58,0        | 82,0   | 130,0                                  |
|                  | El Nino | 11,0   | 26,0   | 47,5        | 78,0   | 125,0                                  |
| Gin Ganga        | La Nina | 23,0   | 40,0   | 56,0        | 81,0   | 114,0                                  |
| 2357750          | Neutral | 23,0   | 39,0   | 54,0        | 73,0   | 112,0                                  |
|                  | El Nino | 17,0   | 29,0   | 44,0        | 76,0   | 119,0                                  |
| Karnali River    | La Nina | 355,0  | 450,0  | 617,0       | 1470,0 | 4150,0                                 |
| 2548400          | Neutral | 326,0  | 405,0  | 632,5       | 1470,0 | 3750,0                                 |
|                  | El Nino | 329,0  | 436,5  | 621,5       | 1225,0 | 3150,0                                 |
| Kali Gandaki (1) | La Nina | 112,0  | 159,0  | 343,0       | 848,0  | 1610,0                                 |
| 2549300          | Neutral | 119,0  | 152,0  | 313,0       | 941,0  | 1290,0                                 |
|                  | El Nino | 104,0  | 142,0  | 249,0       | 540,0  | 1260,0                                 |
| Kali Gandaki (2) | La Nina | 105,0  | 187,0  | 408,5       | 735,0  | 932,0                                  |
| 2549350          | Neutral | 104,0  | 187,5  | 328,0       | 614,5  | 824,5                                  |
|                  | El Nino | 112,0  | 166,0  | 269,0       | 581,0  | 846,0                                  |
| Tamur River      | La Nina | 109,0  | 187,0  | 564,0       | 719,0  | 1060,0                                 |
| 2550500          | Neutral | 115,0  | 195,0  | 391,0       | 743,0  | 938,0                                  |
|                  | El Nino | 102,0  | 162,0  | 357,0       | 626,0  | 909,0                                  |
| Ganges R. (1)    | La Nina | 2012,0 | 2640,0 | 4051,0      | 14610  | 36450,0                                |
| 2646200          | Neutral | 1578,0 | 2396,0 | 3806,5      | 13670  | 36984,0                                |
|                  | El Nino | 1424,0 | 2316,0 | 3592,0      | 10310  | 31874,0                                |
| Ganges R. (2)    | La Nina | 1888,0 | 2615,0 | 4605,0      | 17110  | 44698,5                                |
| 2646800          | Neutral | 1716,0 | 2556,0 | 3938,5      | 15971  | 40266,0                                |
|                  | El Nino | 1852,0 | 2337,0 | 3670,5      | 10700  | 36966,0                                |
| Sapt Kosi        | La Nina | 344,0  | 435,0  | 759,5       | 2074,5 | 4422,5                                 |
|                  | Neutral | 356,5  | 464,0  | 794,0       | 2109,0 | 4297,5                                 |
|                  | El Nino | 365,0  | 446,0  | 696,5       | 1612,0 | 3869,0                                 |
| Godavari         | La Nina | 67,0   | 190,0  | 405,5       | 2849,0 | 10397,0                                |
| 2856900          | Neutral | 92,0   | 211,0  | 388,5       | 2797,0 | 10949,0                                |
|                  | El Nino | 72,0   | 165,0  | 299,0       | 2073,0 | 9699,0                                 |
| Krishna          | La Nina | 9,0    | 44,0   | 255,5       | 2343,0 | 5910,0                                 |
| 2854300          | Neutral | 15,5   | 82,5   | 250,5       | 1792,5 | 5556,5                                 |
|                  | El Nino | 5,0    | 34,0   | 218,0       | 1451,0 | 5310,0                                 |
| Narmada          | La Nina | 3,0    | 12,0   | 31,0        | 153,0  | 1333,0                                 |
| 2853500          | Neutral | 2,0    | 10,0   | 26,0        | 107,0  | 1138,0                                 |
|                  | El Nino | 2,0    | 8,0    | 17,0        | 85,0   | 699,0                                  |

| River     | Year    |        |        | Percentiles |         |         |
|-----------|---------|--------|--------|-------------|---------|---------|
| name      | type    | 10%    | 30%    | 50%         | 70%     | 90%     |
| Amu-Darya | La Nina | 366,0  | 622,0  | 935,0       | 1620,0  | 2630,0  |
| 2917100   | Neutral | 498,0  | 752,0  | 1015,0      | 1860,0  | 3220,0  |
|           | El Nino | 324,0  | 637,0  | 839,0       | 1470,0  | 2620,0  |
| Zaravchan | La Nina | 35,0   | 45,0   | 70,0        | 196,0   | 407,0   |
| 2917450   | Neutral | 35,0   | 45,0   | 74,0        | 176,0   | 411,0   |
|           | El Nino | 35,0   | 48,0   | 77,5        | 196,0   | 381,0   |
| Gunt      | La Nina | 25,0   | 31,0   | 42,5        | 115,0   | 264,0   |
| 2917700   | Neutral | 27,0   | 31,0   | 47,0        | 118,0   | 299,0   |
|           | El Nino | 25,0   | 30,0   | 45,0        | 121,0   | 260,0   |
| Vakhsh    | La Nina | 180,0  | 239,0  | 346,0       | 831,0   | 1430,0  |
| 2917900   | Neutral | 177,0  | 223,0  | 352,5       | 838,0   | 1500,0  |
|           | El Nino | 180,0  | 228,0  | 365,0       | 831,0   | 1370,0  |
| Biya      | La Nina | 59,0   | 96,0   | 282,5       | 606,0   | 1160,0  |
| 2910470   | Neutral | 57,0   | 103,5  | 326,5       | 631,0   | 1115,0  |
|           | El Nino | 53,0   | 104,0  | 412,5       | 655,0   | 1100,0  |
| Ob        | La Nina | 3470,0 | 4430,0 | 7904,5      | 16391,0 | 31500,0 |
| 2912600   | Neutral | 3230,0 | 4370,0 | 7720,0      | 14670,0 | 31800,0 |
|           | El Nino | 3250,0 | 4615,0 | 8129,0      | 13400,0 | 31800,0 |
| Tom (1)   | La Nina | 69,0   | 118,0  | 241,0       | 633,0   | 1900,0  |
| 2910490   | Neutral | 69,0   | 124,0  | 276,0       | 600,0   | 1810,0  |
|           | El Nino | 71,0   | 146,0  | 307,5       | 631,0   | 2060,0  |
| Tom (2)   | La Nina | 148,0  | 231,0  | 427,5       | 835,0   | 3350,0  |
| 2910300   | Neutral | 139,0  | 239,0  | 507,5       | 887,0   | 2820,0  |
|           | El Nino | 146,0  | 229,0  | 490,5       | 1050,0  | 3020,0  |
| Tura      | La Nina | 23,0   | 35,0   | 72,0        | 160,0   | 546,0   |
| 2912400   | Neutral | 21,0   | 36,0   | 64,0        | 170,0   | 507,0   |
|           | El Nino | 21,0   | 34,0   | 53,5        | 147,0   | 487,0   |
| Yenisei   | La Nina | 4350.0 | 6390.0 | 10030.0     | 17473.0 | 33200.0 |
| 2909150   | Neutral | 4420.0 | 6440.0 | 10900.0     | 18400.0 | 41900.0 |
|           | El Nino | 4550.0 | 7020.0 | 10365.0     | 16900.0 | 35300.0 |
| Syr-Darya | La Nina | 139,0  | 335,0  | 454,0       | 603,0   | 878,0   |
| 2916200   | Neutral | 137,0  | 382,0  | 517,0       | 661,0   | 1150,0  |
|           | El Nino | 85,0   | 251,0  | 387,0       | 556,0   | 890,0   |
| Ural      | La Nina | 36,0   | 62,0   | 101,5       | 171,0   | 652,0   |
| 2919200   | Neutral | 37,0   | 66,0   | 96,0        | 174,0   | 663,0   |
|           | El Nino | 46,0   | 73,0   | 112,5       | 235,0   | 874,0   |
| Naryn     | La Nina | 145,0  | 179,0  | 232,0       | 404,0   | 790,0   |
| 2916850   | Neutral | 141,0  | 189,0  | 247,5       | 433,0   | 781,0   |
|           | El Nino | 129,0  | 178,0  | 229,5       | 387,0   | 731,0   |

 Table 47:
 Distribution, by type of years, of runoffs of rivers in the Central Asia area.

|                    |            |                |          |         | I               |           |               |           |         |                 |           |             |            |         |                 |
|--------------------|------------|----------------|----------|---------|-----------------|-----------|---------------|-----------|---------|-----------------|-----------|-------------|------------|---------|-----------------|
| River              | W          | ean Yearly flo | SM       | p-value | p-value         | οW        | onthly Maximu | m         | p-value | p-value         | Mo        | nthly Minim | um         | p-value | p-value         |
|                    | La Nina    | Neutral        | El Nino  | ANOVA   | Kruskall-Wallis | La Nina   | Neutral       | El Nino   | ANOVA   | Kruskall-Wallis | La Nina   | Neutral     | El El Nino | ANOVA   | Kruskall-Wallis |
|                    |            |                |          |         |                 |           |               |           |         |                 |           |             |            |         |                 |
| Darling River      | 22224(A)   | 8600 H)        | (H.S. 5) | 0.0048  | 0.0017          | 80146(A)  | 378500 AB).   | 21478(B)  | 0.0431  | 0.0116          | 1852 I(A) | 104 4(H)    | 256.6(B)   | 0.0006  | 0.0006          |
| Fitzroy            | 254.2(A)   | 129.0(A)       | 152.4(A) | 0.30    | 0.0529          | 1771.3(A) | 796.5(A)      | 1218.1(A) | 0.34    | 0.0804          | 2.16(A)   | 1.98(A)     | 1.35(A)    | 0.82    | 0.0749          |
| Daly               | 212.9(A)   | 215.7(A)       | 204.1(A) | 66.0    | 0.81            | 1259.4(A) | 1405.8(A)     | 1344.9(A) | 0.97    | 0.68            | 16.2(A)   | 18.3(A)     | 15.8(A)    | 0.66    | 0.21            |
| Herbert River      | 118.3(A)   | 103.0(A)       | 98.6(A)  | 0.59    | 0.51            | 551.6(A)  | 541.8(A)      | 506.5(A)  | 0.91    | 0.69            | R.H.A.    | 5 13(B)     | 3.12(B)    | 0.0023  | 0.0022          |
| Mary River (1)     | 47.4(A)    | 53.5(A)        | 44.5(A)  | 0.72    | 0.61            | 322.6(A)  | 370.7(A)      | 336.3(A)  | 0.88    | 0.86            | 0.04(A)   | 0.01(B)     | 0.00(B)    | 0.30    | 0.18            |
| Mary River (2)     | 54.5(A)    | 33.3(B)        | 30.9(B)  | 0.0254  | 0.15            | 327.6(A)  | 181.7(B)      | 169.9(B)  | 0.0314  | 0.49            | 3.24(A)   | 1.59(B)     | (12(B)     | 0.0046  | 0.0146          |
| Mitchell River     | (V-96-94)  | 2748)          | 192(B)   | 0.0031  | 0.0016          | 977(A)    | 83 3(AE)      | 58.1(B)   | 0.0488  | 0.0381          | 3.00(A)   | 2.04(A)     | 1.77(A)    | 0.21    | 0.72            |
| Avoca River        | 92.B(A)    | 16.24B)        | 513(AB)  | 0.0479  | 0.0002          | 396.0(A)  | 88.5(A)       | 287.2(A)  | 0.11    | 0.0024          | 0.59(A)   | 0.43(A)     | 0.77(A)    | 0.79    | 0.41            |
| Huon River         | 85.7(A)    | 82.6(A)        | 84.7(A)  | 0.89    | 0.70            | 214.3(A)  | 185.4(A)      | 184.6(A)  | 0.36    | 0.25            | 14.6(A)   | 19.7(A)     | 19.5(A)    | 0.25    | 0.19            |
| Murrumbidgee River | 1078.8(A)  | 801.7(AB)      | 579.2(B) | 0.0927  | 0.14            | 3291.3(A) | 2608.3(AB)    | 1798.3(B) | 0.12    | 0.0770          | 91.5(A)   | 87.2(A)     | 72.9(A)    | 0.69    | 0.69            |
| Nymboida River     | (A)2.0122  | 2148.7(AD)     | 1549.4B) | 0.0066  | 0.0210          | (A)(A)    | 3535(ÅB)      | 5424(B)   | 0.0074  | 0.0229          | 497.5(A)  | 431.9(AB)   | 305.3(B)   | 0.0803  | 0.0747          |
| Serpentine River   | 5.42(A)    | 4.81(A)        | 3.52(A)  | 0.33    | 0.36            | 22.0(A)   | 18.7(A)       | 15.6(A)   | 0.53    | 0.49            | 0.00(A)   | 0.05(A)     | 0.09(A)    | 0.39    | 0.39            |
| Tipindje           | 10.51(A)   | 9.76(A)        | 8.27(A)  | 0.81    | 0.72            | 40.3(A)   | 43.1(A)       | 46.8(A)   | 0.92    | 0.86            | 0.75(A)   | 0.46(AB)    | 0.00(B)    | 0.12    | 0.0384          |
| Riviere Des Lacs   | 4.37(A)    | 5.54(A)        | 4.12(A)  | 0.13    | 0.10            | 13.I(A)   | 17.4(A)       | 13.0(A)   | 0.13    | 0.18            | 0.00(A)   | 0.31(A)     | 0.29(A)    | 0.22    | 0.36            |
| Mataura            | 51.4(B)    | - 63 4(AB)     | 70.9(A)  | 0.0169  | 0.0211          | 110.0(B)  | 121.4(AB)     | 157.3(A)  | 0.0639  | 0.0799          | 493(B)    | 27.5(AB)    | 33.4(A)    | 0.0256  | 0.0324          |
| Motu               | 105 1, A). | 4 \$51(B)      | 83.9(B)  | 0.0249  | 0.0621          | 214.0(A)  | 177.6(A)      | 187.3(A)  | 0.15    | 0.14            | 30.4(A)   | 25.8(AB)    | 18.1(A)    | 0.0580  | 0.16            |

Numbers associated with the same letters are not discriminated by the Duncan test on the equality of several mean values.

very significant

significant

differences in the mean values as demonstrated by the ANOVA tests.

0.15 0.64 0.44

0.13 0.40 0.79

12.3(A) 25.1(A)

11.4(A) 23.9(A) 11.6(A)

8.6(A) 20.7(A) 10.7(A)

0.0281 0.39 0.95

0.0720 0.65 0.95

**75.7(AB)** 109.8(A) 47.6(A)

**64.8(B)** 98.8(A) 47.0(A)

**85.9(A)** 109.8(A)

0.54 0.78 0.35

0.42 0.78 0.37

32.9(A) 52.6(A) 23.5(A)

> 49.4(A) 24.5(A)

35.6(A) 51.3(A) 21.6(A)

31.9(A)

Ongarue Hurunui Ahuriri

45.7(A)

11.1(A)

Duncan test, Parametric and Non-Parametric ANOVA results for the discrimination of El Nino, La Nina and Neutral years (Oceania Pacific Area). Table 48:

| ea).    |
|---------|
| sia ar  |
| ast A   |
| ar E    |
| urs ( F |
| al yea  |
| Veutr   |
| and N   |
| Nina    |
| ), La   |
| l Nine  |
| ı of E  |
| ation   |
| crimin  |
| ie disc |
| for th  |
| results |
| ٨A      |
| INON    |
| etric / |
| aram(   |
| on-P:   |
| N pue   |
| etric a |
| aramo   |
| est, P: |
| can ti  |
| Dun     |
| e 49:   |
| Table   |

| River             |                    | Mean Yearly flows |           | p-value | p-value         |              | Monthly Maximum |              | p-value | p-value         |           | Monthly Minimum |            | p-value | p-value         |
|-------------------|--------------------|-------------------|-----------|---------|-----------------|--------------|-----------------|--------------|---------|-----------------|-----------|-----------------|------------|---------|-----------------|
| •                 | La Nina            | Neutral           | Ei Nino   | ANOVA   | Kruskall-Wallis | La Nina      | Neutral         | El Nino      | ANOVA   | Kruskall-Wallis | La Nina   | Neutral         | El El Nino | ANOVA   | Kruskall-Wallis |
|                   |                    |                   |           |         |                 |              |                 |              |         |                 |           |                 |            |         |                 |
| Tone              | 247.7(A)           | 246.5(A)          | 266.9(A)  | 0.70    | 0.49            | 596.8(A)     | 592.0(A)        | 773.3(A)     | 0.12    | 0.14            | 96.0(A)   | 104.1(A)        | 95.2(A)    | 0.58    | 0.98            |
| Ishikarı          | 820 6(A)           | 423 2(8)          | 479.36AB) | 0.0253  | 0.0103          | 1441.2(A)    | 1121.7(A)       | 1316.8(A)    | 0.0890  | 0.0587          | 187.4(A)  | 181.9(A)        | 212.3(A)   | 0.34    | 0.41            |
| Shinano           | 496.6(A)           | 507.5(A)          | 592.9(A)  | 0.41    | 0.96            | 1079.3(A)    | 1129.6(A)       | 1241.3(A)    | 0.70    | 0.77            | 248.0(A)  | 247.8(A)        | 259.7(A)   | 06.0    | 1.00            |
| Yodo              | 270.6(A)           | 248.3(A)          | 309 1(A)  | 0.44    | 0.61            | 659.8(A)     | 620.3(A)        | 802.1(A)     | 0.53    | 0.86            | 109.8(A)  | 108.9(A)        | 133.6(A)   | 0.27    | 0.24            |
| Chikugo           | 101.6(A)           | 109.7(A)          | 148.8(A)  | 0.11    | 0.0780          | 261 (18)     | 44.4(AB)        | (V)2 989     | 0.0209  | 0.0108          | 36.2(B)   | 41.3(AB)        | 47.7(A)    | 0.0844  | 0.13            |
| Changjiang        | 23556(A)           | 23369(A)          | 22808(A)  | 0.66    | 0.52            | 43626(A)     | 44528(A)        | 41996(A)     | 0 24    | 0.41            | 7272.6(A) | 6786.5(A)       | 6984.8(A)  | 0.33    | 0.28            |
| Songhuajiang      | 1161.7(A)          | 1228.0(A)         | 1204.0(A) | 0.85    | 0.95            | 2959.8(A)    | 3282 9(A)       | 3229.5(A)    | 0.75    | 0.89            | 205.4(A)  | 187.9(A)        | 214.0(A)   | 0.72    | 0.94            |
| Yongding          | 42.3(A)            | 35.8(A)           | 36.0(A)   | 0.51    | 0.67            | 124.0(A)     | 91.9(A)         | 82.1(A)      | 0.29    | 0.65            | 9.6(B)    | 10.3(B)         | 14.7(A)    | 0.0372  | 0.14            |
| Jinghe            | 60.7(A)            | 60.0(A)           | 64.0(A)   | 0.88    | 0.89            | 172.4(A)     | 194.1(A)        | 190.9(A)     | 0.84    | 0.74            | 16.5(A)   | 17.8(A)         | 16.8(A)    | 0.65    | 0.81            |
| Wujiang           | 1127.2(A)          | 1185.9(A)         | 1081.5(A) | 0.41    | 0.47            | 3121 8(A)    | 3382.2(A)       | 2677.3(A)    | 0.11    | 0.0892          | 293.3(A)  | 279.8(A)        | 259.2(A)   | 0.51    | 0.54            |
| Huanghe(Yel RIV.) | 1458.9(A)          | 1468.5(A)         | 1312.7(A) | 0.65    | 0.60            | 3438.6(A)    | 3758.5(A)       | 3286.0(A)    | 0.59    | 0.70            | 420.5(A)  | 405.4(A)        | 458.8(A)   | 0.68    | 0.66            |
| Beijiang          | 1224.3(A)          | 1023.0(A)         | 1039.0(A) | 0.24    | 0.33            | 3645.6(A)    | 2946.1(A)       | 3145.6(A)    | 0.36    | 0 51            | 300.1(A)  | 234 84.81       | 200 KB)    | 0.0083  | 0.0394          |
| Dongjiang         | 790.7(A)           | 718 6(A)          | 790.9(A)  | 0.61    | 0.85            | 1945 7(A)    | 1712.9(A)       | 1977.1(A)    | 0.65    | 0.68            | 295.6(A)  | 266.2(A)        | 310.3(A)   | 0.72    | 0.92            |
| Yana              | 843.6(B)           | 985.3(A)          | 886.0(AB) | 0.0559  | 0.18            | 3776,31,515) | 4454 30AP       | 3609.2(B)    | 0.0311  | 0.0320          | 0.43(A)   | 0.10(A)         | 1.00(A)    | 0.16    | 0.36            |
| Penzhina          | 662.2(A)           | 710 6(A)          | 700.0(A)  | 0.82    | 0.83            | 4161.4(A)    | 3898.0(A)       | 4318.8(A)    | 0.79    | 0.66            | 22.6(A)   | 20.9(A)         | 19.4(A)    | 0.59    | 0.58            |
| Indigirka         | 1518.7(AB)         | 1701.8(A)         | 1483.4(B) | 0.0560  | 0.11            | 5034 4(B)    | 6877 8643       | \$\$13.0(B). | 0.0209  | 0 0400          | 7.63(A)   | 7.64(A)         | 7.94(A)    | 0.94    | 0.96            |
| Lena              | 16854(A)           | 16664(A)          | 16325(A)  | 0.75    | 0.78            | 75147(A)     | 73813(A)        | 72925(A)     | 0.84    | 0 68            | 1207.4(A) | 1351.9(A)       | 1459.8(A)  | 0.32    | 0.19            |
| Shilka            | 403.7(A)           | 415.9(A)          | 396.7(A)  | 0.89    | 0.79            | 1279.9(A)    | 1304.0(A)       | 1237.6(A)    | 0.91    | 0.67            | 3.42(A)   | 3 70(A)         | 3.71(A)    | 0.93    | 0.74            |
| Kamchatka         | 779.5(A)           | 775.5(A)          | 786.4(A)  | 0.94    | 16.0            | 1853.6(A)    | 1920 7(A)       | 1814.2(A)    | 0 55    | 0.60            | 393.5(A)  | 370.6(A)        | 387.5(A)   | 0.21    | 0.34            |
| Amur (1)          | 8539.7(A)          | 8389.1(A)         | 8368.2(A) | 0.94    | 0.92            | 20283(A)     | 20950(A)        | 21167(A)     | 0.86    | 0.94            | 605.3(A)  | 612 1(A)        | 617.3(A)   | 0.98    | 0.98            |
| Amur (2)          | 10146(A)           | 9574(A)           | 10208(A)  | 0.51    | 0.68            | 22162(A)     | 22793(A)        | 24242(A)     | 0.54    | 0.58            | 1085.1(A) | 1042.3(A)       | 1039.2(A)  | 0.95    | 0.77            |
| Li-Wu             | 3573 9(A)          | 3335.4(A)         | 2940 1(A) | 0.37    | 0.40            | 11105(A)     | 9342(A)         | 10195(A)     | 0.60    | 0.59            | 1218.0(A) | 1036.5(A)       | 1006.5(A)  | 0.23    | 0.29            |
| Yufeng            | 1 <i>5</i> 75.6(A) | 1836.8(A)         | 1637.8(A) | 0.45    | 0 35            | 5297(A)      | 6157(A)         | 5794(A)      | 0.73    | 0.72            | 456.4(A)  | 444 6(A)        | 373.6(A)   | 0.47    | 0.43            |
| Sandimen          | 3083.7(A)          | 3154.3(A)         | 3804.2(A) | 0.43    | 0.48            | 12633(A)     | 14627(A)        | 16919(A)     | 0.34    | 0.41            | 58.3(A)   | 62 0(A)         | 73.6(A)    | 0.37    | 0.23            |
| Xınfadaqiao       | 6426(A)            | 6566(A)           | 8341(A)   | 0.19    | 0.34            | 21937(A)     | 25725(A)        | 32962(A)     | 0 20    | 0.28            | 1338.5(A) | 1016.9(A)       | 1123.9(A)  | 0.16    | 0.12            |

Numbers associated with the same letters are not discriminated by the Duncan test on the equality of several mean values.



| River      |           | Mean Yearly flows      |             | p-value | p-value         |           | Monthly Maximum  |           | p-value | p-value         |           | <b>Monthly Minimum</b> |            | p-value | p-value         |
|------------|-----------|------------------------|-------------|---------|-----------------|-----------|------------------|-----------|---------|-----------------|-----------|------------------------|------------|---------|-----------------|
|            | La Nina   | Neutral                | El Nino     | ANOVA   | Kruskall-Wallis | La Nina   | Neutral          | El Nino   | ANOVA   | Kruskall-Wallis | La Nina   | Neutral                | E! El Nino | ANOVA   | Kruskail-Wallis |
|            |           |                        |             |         |                 |           |                  |           |         |                 |           |                        |            |         |                 |
| Pampanga   | 215.6(A)  | 224.7(A)               | 251 5(A)    | 0.56    | 0.75            | 707.6(A)  | 730.2(A)         | 854.6(A)  | 0.52    | 0 92            | 25.2(A)   | 22.6(A)                | 24.9(A)    | 0.85    | 0.98            |
| Bonga      | 21.4(A)   | 28.5(A)                | 25.6(A)     | 0.38    | 0.27            | 83.6(A)   | 109 6(A)         | 110.2(A)  | 0.38    | 0 35            | 1.30(A)   | 1.85(A)                | 1.50(A)    | 0.52    | 0.66            |
| Kelantan   | 623 7 (A) | 1. 1. 207.01A)         | 5661(A)     | 0.0447  | 0.0384          | 1669.3(A) | 1230.6(A)        | 1584.7(A) | 0.21    | 0 42            | 304.4(A)  | 228.0(A)               | 225.2(A)   | 0.11    | 0.0510          |
| Mekong (1) | 8065.1(A) | 8043.0(A)              | 7557.5(A)   | 0.32    | 0.37            | 23383(A)  | 23778(A)         | 22099(A)  | 0.38    | 0.33            | 1549.8(A) | 1410.7(A)              | 1491.8(A)  | 0 0916  | 0.18            |
| Nam Chi    | 239 2(A)  | 256.5(A)               | 228.9(A)    | 0.66    | 0.89            | 796.8(A)  | 826.2(A)         | 860.1(A)  | 0.88    | 0.77            | 23.0(A)   | 30.8(A)                | 27.6(A)    | 0.66    | 0.66            |
| Nam Mun    | 556.9(A)  | 666.2(A)               | 620.0(A)    | 0.40    | 0.57            | 2018.5(A) | 2543.1(A)        | 2514.9(A) | 0.32    | 0.21            | 44.3(A)   | 55 4(A)                | 51.3(A)    | 0.69    | 0 66            |
| Nan        | 192.0(A)  | 1868(A)                | 138.0(B)    | 0.0395  | 0.0375          | 728.6(A)  | 752.9(A)         | 545.3(A)  | 0.20    | 0.14            | 20.9(A)   | 23.7(A)                | 20.1(A)    | 0.61    | 0.92            |
| Mekong (2) | 2761.4(A) | 2681.0(A)              | 2722 5(A)   | 06.0    | 0.85            | 7350.1(A) | 6801.2(A)        | 6723.4(A) | 0.69    | 0 54            | 807.9(A)  | 809.7(A)               | (A)1 (A)   | 0.65    | 0.74            |
| Mekong (3) | 7413.6(A) | 7096.7(A)              | 6671 8(A)   | 0.40    | 0.35            | 21311(A)  | 20254(A)         | 18988(A)  | 0.54    | 0.62            | 1381.8(A) | 1391.5(A)              | 1562.9(A)  | 0.18    | 0 38            |
|            | Nimbers 9 | secondated with the se | ame letters |         |                 |           | verv sionificant |           |         |                 |           |                        |            |         |                 |

Table 50: Duncan test, Parametric and Non-Parametric ANOVA results for the discrimination of El Nino, La Nina and Neutral years (South East Asia area).

Numbers associated with the same letters are not discriminated by the Duncan test on the equality of several mean values.

significant

|                  |           |                   |           |         |                 |           |                 | ļ         |         |                 |           |                 | ĺ          |         |                 |
|------------------|-----------|-------------------|-----------|---------|-----------------|-----------|-----------------|-----------|---------|-----------------|-----------|-----------------|------------|---------|-----------------|
| River            |           | Mean Yearly flows |           | p-value | p-value         |           | Monthly Maximum |           | p-value | p-value         |           | Monthly Minimum |            | p-value | p-value         |
|                  | La Nina   | Neutral           | El Nino   | ANOVA   | Kruskall-Wallis | La Nina   | Neutral         | El Nino   | ANOVA   | Kruskall-Wallis | La Nina   | Neutral         | El El Nino | ANOVA   | Kruskall-Wallis |
|                  |           |                   |           |         |                 |           |                 |           |         |                 |           |                 |            |         |                 |
| Mahaweli Ganga   | 69.7(A)   | 66.3(A)           | 60.2(A)   | 0.39    | 0.29            | 171.1(A)  | 158.6(A)        | 149.2(A)  | 0.64    | 0.56            | 15.8(A)   | 14.5(A)         | 11.1(A)    | 0.48    | 0.26            |
| Gin Ganga        | 64.3(A)   | 61.8(A)           | 57.8(A)   | 0.30    | 0.19            | 134.4(A)  | 135.4(A)        | 134.5(A)  | 0.99    | 0.96            | 20.1(A)   | 20.1(A)         | 15.5(A)    | 0.13    | 0.19            |
| Kamali River     | 1420.5(A) | 1380.3(A)         | 1273.6(A) | 0.47    | 0.28            | 4336.9(A) | 4445.3(A)       | 4052.3(A) | 0.65    | 0.62            | 323.4(A)  | 307 4(A)        | 324.2(A)   | 0.76    | 0.51            |
| Kalı Gandakı (1) | 643.9(A)  | 570.6(AB)         | 439.9(B)  | 0.0410  | 0.10            | 1646.7(A) | 1434.0(A)       | 1354.8(A) | 0.42    | 0.40            | 99.7(A)   | 104.6(A)        | 97.5(A)    | 0 82    | 0.84            |
| Kali Gandaki (2) | 491.56A)  | 418.1081          | 392 (BB)  | 0.0162  | 0.0478          | 974.5000  | 8.2.3036 67     | 841.203)  | 0.0341  | 0.0513          | (A)0.96   | 83 4(A)         | 105.2(A)   | 0.32    | 0.39            |
| Tamur River      | 5333(A)   | 403.8(AB)         | 419 5(B)  | 0.0268  | 0.0239          | 1067.2(A) | 990.2(A)        | 954.2(A)  | 0.40    | 0.35            | 92 8(A)   | 105.8(A)        | 86.5(A)    | 0.66    | 0.80            |
| Ganges R. (1)    | 11565(A)  | 11476(A)          | 10360(A)  | 0.33    | 0.18            | 39183(A)  | 41743(A)        | 39095(A)  | 0.59    | 0.85            | 1893.6(A) | 1668 7(A)       | 1666.8(A)  | 0.38    | 0.21            |
| Ganges R (2)     | (A)1(0)1  | 12479(AB)         | 10835(B)  | 0.0102  | 0.0189          | 50408(A)  | 45465(AB)       | 41615(B)  | 0.11    | 0.17            | 1804.0(A) | 1719.6(A)       | 1675.3(A)  | 0.67    | 0.81            |
| Sapt Kosi        | 1688.1(A) | 1661.0(A)         | 1472.3(A) | 0.14    | 0.0868          | 5112.3(A) | 4683.5(A)       | 4603.4(A) | 0.47    | 0.43            | 328.2(A)  | 352.3(A)        | 341.3(A)   | 0.25    | 0.28            |
| Godavari         | 3028.5(A) | 3186.1(A)         | 2828.1(A) | 0.48    | 0.52            | 12428(A)  | 14018(A)        | 14201(A)  | 0.48    | 0.53            | 59 8(A)   | 81.7(A)         | 64.4(A)    | 0.27    | 0.18            |
| Krishna          | 1818.3(A) | 1607.5(A)         | 1502.3(A) | 0.17    | 0.49            | 7186.1(A) | 6965.3(A)       | 6947.1(A) | 0.94    | 0.97            | 18.3(A)   | 23.3(A)         | 19.0(A)    | 0.84    | 0.0229          |
| Narmada          | 323.3(A)  | 296.4(A)          | 280.3(A)  | 0.87    | 0.34            | 1727.0(A) | 1541.4(A)       | 2094.2(A) | 0.73    | 0 25            | 2.22(A)   | 1.82(A)         | 1.50(A)    | 0.55    | 0.67            |
|                  |           |                   | -         |         |                 |           |                 |           |         |                 |           |                 |            |         |                 |

Table 51: Duncan test, Parametric and Non-Parametric ANOVA results for the discrimination of El Nino, La Nina and Neutral years (Indian Subcontinent area).

Numbers associated with the same letters are not discriminated by the Duncan test on the equality of several mean values.

significant

|           |                   | Maan Vaadu flame    |           | - united | outor-o         |           | Monthly Maximum |           | oniter-ru | n-valtie        |           | Monthly Minimum |            | n-value | p-value         |
|-----------|-------------------|---------------------|-----------|----------|-----------------|-----------|-----------------|-----------|-----------|-----------------|-----------|-----------------|------------|---------|-----------------|
|           | l a Nina          | Nautral Learly HUWS | El Nino   | ANDVA    | kruskall-Wallis | La Nina   | Neutral         | El Nino   | ANOVA     | Kruskall-Wallis | La Nina   | Neutral         | El El Nino | ANOVA   | Kruskail-Wallis |
|           |                   |                     |           |          |                 |           |                 |           |           |                 |           |                 |            |         |                 |
| Amu-Darya | 1261.1(A)         | 1494.4(A)           | 1240.7(A) | 0.0828   | 0.13            | 2962.5(A) | 3514.1(A)       | 3110.0(A) | 0.28      | 0.37            | 313.8(A)  | 431.9(A)        | 318.7(A)   | 0.19    | 0 15            |
| Zaravchan | 156 4(A)          | 154.1(A)            | 154.8(A)  | 0.94     | 0.96            | 473.9(A)  | 474.3(A)        | 445.8(A)  | 0.50      | 0.62            | 34.8(A)   | 34.3(A)         | 36.4(A)    | 0.39    | 0.73            |
| Gunt      | 101.6(A)          | 107.1(A)            | 100.1(A)  | 0.51     | 0.53            | 325.2(A)  | 355.6(A)        | 335.4(A)  | 0.63      | 0.53            | 26.0(A)   | 26.1(A)         | 25.0(A)    | 0.23    | 0.27            |
| Vakhsh    | 631 8(A)          | 652 4(A)            | 622.4(A)  | 0.64     | 0.78            | 1648.9(A) | 1715.0(A)       | 1590.0(A) | 0.57      | 0.53            | 180.8(A)  | 170.0(A)        | 172.9(A)   | 0.29    | 0.29            |
| Biya      | 465.4(A)          | 474.6(A)            | 500.0(A)  | 0.47     | 0.36            | 1400.8(A) | 1399.8(A)       | 1417.7(A) | 66.0      | 0.89            | 58.3(A)   | 52.6(A)         | 52.9(A)    | 0.15    | 0.27            |
| ර         | 12776(A)          | 12414(A)            | 12527(A)  | 0.83     | 0.72            | 34177(A)  | 32973(A)        | 33629(A)  | 0.57      | 0.59            | 3303.6(A) | 3186.4(A)       | 3315.4(A)  | 0.74    | 0.92            |
| Tom (1)   | 659.3(A)          | 630.1(A)            | 685.0(A)  | 0.19     | 0.30            | 3124 6(A) | 2817.4(A)       | 3003.6(A) | 0.27      | 0.0822          | 68.7(A)   | 67.6(A)         | 71.4(A)    | 0.78    | 0.78            |
| Tom (2)   | 1057.7(A)         | 1008 9(A)           | 1101.7(A) | 0.55     | 0.73            | 4219.7(A) | 4602.3(A)       | 5060.6(A) | 0.45      | 0.48            | 124.6(A)  | 125.9(A)        | 138 0(A)   | 0.71    | 0.78            |
| Tura      | 181.7(A)          | 186 6(A)            | 205.6(A)  | 0.72     | 0.98            | 755.2(A)  | 777.0(A)        | 1093.6(A) | 0.24      | 0.71            | 25.0(A)   | 24.2(A)         | 23.1(A)    | 0.78    | 0.89            |
| Yenisei   | 17821( <b>A</b> ) | 18255(A)            | 17940(A)  | 0 59     | 0.45            | 76500(A)  | 77989(A)        | 79740(A)  | 0.76      | 0.80            | 5133.3(A) | 4914 3(A)       | 5437.5(A)  | 0.55    | 0.44            |
| Syr-Darya | 500.9(A)          | 595.2(A)            | 460.9(A)  | 0.21     | 0 21            | 954.9(A)  | 1154.7(A)       | 945.4(A)  | 0.29      | 0.31            | 245 1(AB) | 292.6(A)        | 187.1(B)   | 0.0902  | 0.0950          |
| Ural      | 280.3(A)          | 278.8(A)            | 362.6(A)  | 0.36     | 0.37            | 1504.6(A) | 1461.9(A)       | 1746.6(A) | 0.77      | 0.49            | 45.6(A)   | 44.7(A)         | 52.1(A)    | 0.59    | 0.48            |
| Naryn     | 363.2(A)          | 375.5(A)            | 344.7(A)  | 0.61     | 0.72            | 921.8(A)  | 922.7(A)        | 893.6(A)  | 0.96      | 0.81            | 146.1(A)  | 134.7(A)        | 126.2(A)   | 0.47    | 0.42            |
|           |                   |                     |           |          | _               |           |                 |           |           |                 |           |                 |            |         |                 |

Table 52: Duncan test, Parametric and Non-Parametric ANOVA results for the discrimination of El Nino, La Nina and Neutral years (Central Asia area).

Numbers associated with the same letters are not discriminated by the Duncan test on the equality of several mean values.

very significant significant

| Oceania-Pacific area). |
|------------------------|
| SOI classification (   |
| is according to        |
| runoff distribution    |
| Monthly 1              |
| Table 53a:             |

| River                                 | IOS            | Month       | J                  | F            | W                        | A                 | MA                                            | N              | JL               | AU             | s                | 0              | z                 | <u>م</u>   | Total   |
|---------------------------------------|----------------|-------------|--------------------|--------------|--------------------------|-------------------|-----------------------------------------------|----------------|------------------|----------------|------------------|----------------|-------------------|------------|---------|
| Darling                               |                | N obs       | 6                  | 10           | 6                        | 6                 | 8                                             | 10             | 10               | 10             | 10               | 11             | 10                | 11         | 117     |
|                                       | La Nina        | Mean        | 35553 0            | 43892.6      | <b>51326</b><br>114371.2 | 38985 3           | 22209 0                                       | 23140.7        | 23457<br>34692.9 | 76636.0        | 25049<br>37422.4 | 8604.6         | 30247.0           | 44743.0    | 50286.4 |
|                                       |                | N obs       | 33                 | 31           | 31                       | 31                | 30                                            | 30             | 30               | 29             | 29               | 27             | 31                | 30         | 362     |
|                                       | Neutral        | Mean        | 3866               | 4873         | 9068                     | 6225              | 8854                                          | 7452           | 8530             | 10940          | 12425            | 6844           | 5366              | 4810       | 7378    |
|                                       |                | sd          | 47517              | 5277.7       | 12409.4                  | 9044.0            | 22493 5                                       | 20251.4        | 14923.7          | 11452.3        | 17595.4          | 9227.8         | 6583.8            | 67966      | 13012.5 |
|                                       |                | N obs       | 8                  | 6            | 10                       | 10                | 12                                            | 10             | 10               | 11             | 11               | 12             | 6                 | 6          | 121     |
|                                       | El Nino        | Mean        | 3241               | 3621         | 8764                     | 8449              | 2477                                          | 6440           | 4971             | 1859           | 1575             | 1624           | 2687              | 4854       | 4129    |
|                                       |                | sd          | 4559.4             | 3523.7       | 12365.1                  | 13169.9           | 3670.1                                        | 14847.6        | 8244 2           | 2144.8         | 1483 6           | 1949.1         | 5368.4            | 7142.3     | 7855.3  |
| Mean Darling<br>P.Value Darling       | (n=50)         | -           | 7637               | 0.0003       | 22014<br>0.0009          | 0.0006            | 9356                                          | 8959<br>0.46   | 10804            | 0.0176         | 0.0797           | 6756<br>0.0109 | 7516<br>0.0304    | 8276       | 10000   |
| Fitzrow                               |                | N obe       | 01000              | 50000        | 20000                    | 0.000             | 4                                             | 9.4.0          | 9                | 6 6            | 6                | 6              | 5                 | 5          | 63      |
|                                       | La Nina        | Mean        | 1462               | 1307         | 583                      | 286               | 184                                           | 9              | , <b>1</b>       | 16             | ) r              | 21 ¢           | 28                | 698        | 347     |
|                                       |                | sd          | 1503.4             | 1102.5       | 291.1                    | 429.3             | 327.4                                         | 121.2          | 24.7             | 27.4           | 6.6              | 44.0           | 19.9              | 767.0      | 692.3   |
|                                       |                | N obs       | 20                 | 17           | 17                       | 16                | 15                                            | 15             | 16               | 15             | 15               | 14             | 17                | 17         | 194     |
|                                       | Neutral        | Mean        | 459                | 407          | 235                      | 81                | 59                                            | 112            | 33               | 23             | 16               | æ              | 40                | 77         | 140     |
|                                       |                | sd          | 1339.7             | 608.8        | 493.7                    | 231.5             | 132 3                                         | 252.8          | 72.1             | 49.7           | 34.4             | 9.2            | 48.1              | 973        | 513.4   |
|                                       |                | N obs       | 7                  | 6            | 6                        | 10                | 12                                            | 10             | 6                | 10             | 10               | 11             | 6                 | 6          | 115     |
|                                       | El Nino        | Mean        | 66<br>15 0         | 398          | 276                      | 22                | 402                                           | 12<br>37.0     | 3<br>60<br>7     | 4 <sup>7</sup> | 1 0              | 11             | 13<br>16.4        | 67         | 110     |
|                                       |                | 198         | 40.0               | 7.1701       | 400.4                    | 0.02              | TOCIT                                         | 32.0           | 0.0              | 1.0            | 61               | 7.70           | +:01              | 112.1      | 101     |
| Mean Fitzroy (<br>P-Value Fitzrov     | (n=31)         |             | <b>500</b><br>0.20 | 550<br>0.10  | <b>303</b>               | ኖ (13<br>ይ        | 208                                           | 0.43           | 23<br>0.42       | cl 0           | 0.35             | 0 62           | <b>30</b><br>0.24 | 0.0011     | 0.0134  |
| Dalv                                  |                | N ohs       | 4                  | \$           | 5                        | 5                 | 4                                             | 9              | 9                | 9              | 9                | 9              | 5                 | S.         | 63      |
|                                       | La Nina        | Mean        | 377                | 771          | 2151                     | 547               | 62                                            | , œ            | 23               | 18             | 17               | , <b>6</b>     | 26                | 131        | 326     |
|                                       |                | sd          | 308.5              | 582 2        | 1892.1                   | 369.9             | 27.9                                          | 17.7           | 13.8             | 12.4           | 10.9             | 11.8           | 3.6               | 103.7      | 784.5   |
|                                       |                | N obs       | 16                 | 14           | 14                       | 13                | 13                                            | 12             | 13               | 12             | 12               | II             | 14                | 14         | 158     |
|                                       | Neutral        | Mean        | 268                | 725          | 672                      | 169               | 37                                            | 26             | 22               | 21             | 19               | 18             | 26                | 78         | 185     |
|                                       |                | sd          | 220 1              | 709.3        | 696.6                    | 258.3             | 18.0                                          | 10.4           | 7.4              | 4.7            | 3.6              | 2.6            | 89                | 67.0       | 394.0   |
|                                       | i              | N obs       | 9                  | L            | 4                        | ×                 | 6                                             | ×              | 2                | <b>%</b>       | 80               | 6              | 7                 | 5          | 16      |
|                                       | El Nino        | Mean        | 155                | 721          | 933                      | 233               | 88<br>1                                       | 25<br>2.5      | 22               | 61 (           | 17               | 16<br>2        | 50<br>;<br>5      | 20         | 176     |
|                                       |                | sd          | 1.66               | 684.6        | 913.0                    | 40/.4             | 612                                           | 9.6            | 10               | 7.0            | 0,4              | 6.6            | 7.0               | + 1C       | 434.0   |
| Mean Daly (n=<br>P-Valne Dalv         | (47=           |             | 0.20               | cc/<br>66 () | 0.04                     | 0.15              | 0.17                                          | 0.76           | 77<br>86'0       | 0.76           | 0.86             | 0.51           | 0.22              | 0.23       | 0.13    |
| Herbert                               |                | N obs       | 15                 | 16           | 15                       | 15                | 13                                            | 14             | 15               | 15             | 15               | 16             | 16                | 17         | 182     |
|                                       | La Nina        | Mean        | 279                | 509          | 540                      | 205               | 84                                            | 46             | 33               | 21             | 18               | 13             | 23                | 103        | 157     |
|                                       |                | sd          | 275.3              | 2967         | 358 0                    | 130.0             | 52 6                                          | 31.6           | 22.5             | 13.6           | 12.7             | 10.3           | 35.6              | 144.9      | 346.3   |
|                                       |                | N obs       | 53                 | 50           | 51                       | 51                | 51                                            | 52             | 51               | 50             | 50               | 47             | 49                | 48         | 603     |
|                                       | Neutral        | Mean        | 183                | 370<br>352 3 | 330<br>18.7              | <b>102</b>        | 62<br>57 J                                    | 42             | 26<br>31 3       | 18             | 14               | 01 ° 0         | 9                 | 27<br>57 £ | 101     |
|                                       |                | noho N      | 13                 | 71000        | 15                       | 15                | 1.00                                          | 15             | 15               | 16             | 16               | 18             | 16                | 16         | 187     |
|                                       | El Nino        | Mean        | 35                 | 241          | 279                      | 149               | 82                                            | 5 <del>4</del> | E E              | 15             | 6                | , vo           | 4                 |            | 73      |
| _                                     |                | sd          | 33.4               | 269.6        | 467.2                    | 1767              | 71.4                                          | 32.3           | 17.9             | 7.1            | 3.9              | 2.3            | 22                | 9.5        | 182.2   |
| Mean Herbert                          | (n=81)         |             | 177                | 374          | 359                      | 130               | 70                                            | 43             | 28               | 18             | 14               | 6              | 12                | 39         | 106     |
| P-Value Herber                        | Ę              |             | 0.0285             | 0.0831       | 0.0896                   | 0.0114            | 0.30                                          | 0.92           | 0.49             | 0.39           | 0.10             | 0.0610         | 0.0248            | 0.0008     | 0.0003  |
| Mary (1)                              | ;              | N obs       | 9                  | 7            | -                        | ¢ ۵               | vo i                                          | L +            | -                | - 4            | r 4              | ∞ •            | r 1               | ~ <b>;</b> | 81      |
|                                       |                | wiean<br>sd | 88                 | 9 071        | 411<br>401 7             | 99 P              | n (r                                          | I<br>U V       | <b>n</b>         | • 6            | <b>n</b> (       | <b>n</b>       | o                 | 200        | 171 9   |
|                                       |                | ode N       | 1.00               | 142.0        | 1.10+                    | 13                | <u>, , , , , , , , , , , , , , , , , , , </u> | 0.0            | 50               | 70             | 5                | 10             | 16                | 66         | 263     |
|                                       | Neutral        | Mean        | 6 <u>7</u>         | 225          | 169                      | 47                | 4 F.                                          |                |                  |                | . 0              | ) =            | 77                | 17         | 47      |
| _                                     |                | ps          | 83.8               | 224.8        | 165 0                    | 90.3              | 4.0                                           | 60             | 0.3              | 0.2            | 0.1              | 0.5            | 4.0               | 46.5       | 114.0   |
|                                       |                | N obs       | 8                  | 10           | 10                       | 10                | 12                                            | 10             | 10               | П              | 11               | 12             | 10                | 10         | 124     |
|                                       | El Nino        | Mean        | <b>5</b> 9         | 227          | 191                      | 13                |                                               | 0              | • 3              | • 3            | •                | - 2            | - 2               | 12         | 40      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | V (30)         | Su          | 0/.0               | 199.2        | 210 2                    | C 11              | ۲.<br>۲                                       | <u>د</u> ۷     | *) •             | 1.0            | 0.0              | † †            | +<br>+            | 0.0T       | 07      |
| P-Value Mary (1                       | (ve=n)(<br>(1) |             | 0.75               | 977          | 218<br>0.0656            | <b>38</b><br>0.44 | ۍ<br>110                                      | 0.54           | n<br>16:0        | 0.92           | 0 18             | 0.38           | 2<br>0.0445       | 69.0       | 49      |
| 1 1 mm                                |                |             | 21.0               |              | 00000                    |                   |                                               |                | 100              | # C O          | 010              | 22.2           | 2                 | 20-20      | 04-0    |

| Oceania-Pacific area). |
|------------------------|
| I classification (     |
| g to SO                |
| according              |
| distributions          |
| athly runoff           |
| : Moi                  |
| Table 53b              |

| River                        | IOS               | Month  | ſ              | F            | М            | A            | MA          | JN           | JL           | AU           | S            | 0                 | N                 | D       | Total          |
|------------------------------|-------------------|--------|----------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------------|-------------------|---------|----------------|
| Mary (2)                     |                   | N obs  | 17             | 18           | 16           | 15           | 13          | 14           | 15           | 15           | 16           | 17                | 17                | 18      | 191            |
|                              | La Nina           | Mean   | 159            | 158<br>106.0 | 162<br>204.0 | 100          | <b>1</b>    | 36<br>26.0   | 71           | 14           | <b>۲</b>     | 10                | 15                | 45      | <b>72</b>      |
|                              |                   | DS - X | 47007          | 190.9        | 204.9        | 0.022        | 100.2       | 0.00         | C.ICI        | 10.0         | 4.7          | 10.0              | 11.0              | 147 U   | 1401           |
|                              |                   | N ODS  | 4 (            | 10           | 2 8          | 40 g         | 70          | 4<br>7       | с<br>С       | ç, o         | 7C           | 64 e              | 10 2              | 20      | 070            |
|                              | Ivenual           | sd     | 25<br>1257     | 00<br>141 0  | 1416         | 00<br>73.3   | 40.5        | 76.0         | 45.1         | 11.9         | 5,6          | 19.9              | 27.7              | 45.2    | 82.5           |
| 1                            |                   | N obs  | 15             | 17           | 17           | 17           | 21          | 18           | 18           | 18           | 18           | 20                | 18                | 18      | 215            |
|                              | El Nino           | Mean   | *              | 75           | 54           | 18           | 26          | 17           | 6            | 4            | 4            | ¢                 | 10                | 10      | 20             |
|                              | _                 | ps     | 86             | 153.2        | 85.2         | 267          | 51.9        | 27.8         | 13.9         | 4.6          | 5.3          | 9.5               | 28.6              | 17.7    | 56.7           |
| Mean Mary (2)                | ) (n=86)          | i      | 65             | 100          | 90           | 52           | 30          | 32           | 26           | ×            | ŝ            | 6                 | 14                | 26      | 38             |
| P-Value Mary (               | 2)                |        | 0 0130         | 0.21         | 0.0818       | 0.12         | 0.0180      | 0.51         | 0.0129       | 0.11         | 0.26         | 0.70              | 0.81              | 0.0455  | 0.0001         |
| Mitchell                     | ;                 | N obs  | 10             | = (          | 10           | 0 8          | 6           | 6            | o (          | 01           | 01 🔇         | = (               | = ;               | 12      | 122            |
|                              | La Nina           | Mean   | 18<br>10 f     | 12           | 14           | 32           | <b>41</b>   | 44<br>7      | 62<br>40.7   | 73 0         | 69<br>Js I   | <b>68</b><br>21.2 | 41<br>315         | 18      |                |
|                              |                   | N ohe  | 15             | 20           | 31           | 31           | 30          | 7.1C         | 31           | 30           | 30           | 270               | 20                | 28      | 359            |
|                              | Neutral           | Mean   | ۲. ×           | 4            | i v          | -<br>-       | 6 <b>1</b>  | 7 <b>6</b>   | 40           | 3 12         | 8            | 46                | 1 2               | 25      | <b>58</b>      |
|                              |                   | sd     | 5.6            | 4.8          | 62           | 11.2         | 19.6        | 52.2         | 30.0         | 29.1         | 24.2         | 24.3              | 27.1              | 31.8    | 31.4           |
|                              |                   | N obs  | 6              | 10           | 6            | 6            | 11          | 6            | 10           | 10           | 10           | 12                | 10                | 10      | 119            |
|                              | El Nino           | Mean   | 7              | ŝ            | Э            | S            | ×           | 18           | 26           | 30           | 32           | 38                | 19                | 10      | 17             |
|                              |                   | sd     | 11.6           | 6.9          | 3.5          | 3.8          | 5.6         | 20.6         | 164          | 14.8         | 16.3         | 30.2              | 16.2              | 9.8     | 19.0           |
| Mean Mitchell                | (n=50)            |        | 10             | 9            | 7            | 12           | 21          | 36           | 41           | 52           | 53           | 49                | 33<br>0 16        | 20      | 28             |
| P-Value Mitche               |                   |        | 0.0420         | 01/10        | 80000        | 7010.0       | 00100       | 0.40         | 4000.0       | 67100        | 0.0029       | 4070'D            | C1:0              | 14.0    | 1000.0         |
| Avoca                        |                   | N obs  | 21             | 21           | 6 <u>1</u> r | 18           | 16          | 81           | 61 <b>6</b>  | 19           | 50<br>110    | 21                | 51<br>30          | 22<br>E | 235            |
|                              | La Nina           | Mean   | 4 <sup>0</sup> | 4 r          |              | C/.          | 128         | 110          | 107          | 137.0        | 007 5        | 10                | 00<br>111         | ° 1     | 7.575<br>7.575 |
|                              |                   | N obe  | 0.1<br>65      | 13           | 6.61         | 67           | 413.1       | 107.0        | 0'100        | 0 761        | 65           | 67<br>67          | 64                | 6.11    | 1.616          |
|                              | Neutral           | Mean   | 3 4            | 5,           | - 00         | - ÷          | 3 <b>F</b>  | 7            | 90           | 36           | 6 2          | 70 7              | 5 =               |         | 25             |
|                              |                   | ps     | 8.7            | 4.5          | 3.3          | 2.8          | 168.8       | 119.9        | 181.6        | 232.0        | 212.8        | 195.3             | 39.7              | 24.8    | 135.2          |
|                              |                   | N obs  | 18             | 19           | 19           | 19           | 23          | 20           | 19           | 61           | 19           | 21                | 19                | 20      | 235            |
|                              | El Nino           | Mean   | 26             | 6            | 7            | 7            | 12          | 26           | 32           | 94           | 317          | 169               | 20                | 67      | 64             |
|                              | _                 | ps     | 97.3           | 25.8         | 38           | 3.4          | 46,4        | 75.3         | 6.66         | 2257         | 797.8        | 641.9             | 82.6              | 294.0   | 325.1          |
| Mean Avoca (n                | 1=104)            |        | 7              | 4            | 2            | 14           | 47          | 85           | 74           | 77           | 137          | 73                | 18                | 18      | 46             |
| P-Value Avoca                |                   |        | 0 0932         | 0.0778       | 0 0019       | 0.0074       | 0.0700      | 0.0006       | 0 0202       | 0.93         | 0.0945       | 0.33              | 0 39              | 0.17    | 0.0001         |
| Huon                         | ;                 | N obs  | 6              | 10           | 6            | 6            | ~ 2         | 10           | 0 è          | 01           | 01           | = 9               | 10                | = 1     | 117            |
|                              | La Nina           | Mean   | 30 O           | <b>1</b> 2   | 33<br>164    | 40<br>7 2    | 89<br>26.3  | 66 g         | 0 05         | 55 ()        | 112          | 18.0              | <b>69</b><br>48 9 |         | <b>5</b> 9 2   |
|                              |                   | N ohe  | 202            | 26           | 2.6          | 2.6          | 25          | 25           | 25           | 24           | 24           | 22                | 26                | 25      | 303            |
|                              | Neutral           | Mean   | 4              | F            | 38           | 84           | 113         | 116          | 137          | 123          | 103          | 86                | 82                | 70      | 84             |
|                              | -                 | sd     | 31.8           | 22.1         | 19.1         | 40.4         | 63 1        | 86.0         | 53.9         | 52.8         | 50.1         | 41.8              | 47.0              | 42.5    | 58.5           |
|                              |                   | N obs  | 8              | 10           | 11           | 11           | 13          | 11           | 11           | 12           | 12           | 13                | 10                | 10      | 132            |
|                              | El Nino           | Mean   | 53             | 29           | 44           | 77           | 106<br>56 0 | 103          | 120          | 116          | 122          | 86<br>26.1        | <b>1</b> 0        | 26 °    | 85<br>10 c     |
| -<br>                        |                   | 20     | 5.05           | 10.0         | 7.67         | 4.04         | 0.00        | 1.14         | 7.00         | 23.5         | 41.4         | 50 <del>4</del>   | C.04              | 0.00    |                |
| Mean Huon (n<br>P-Value Huon | - <del>4</del> 6) |        | 43<br>047      | 28<br>0 0 0  | 95<br>0 48   | 0.14         | 107<br>0.63 | 0.69         | 130          | 0.47         | 0 52         | 94<br>0 14        | 0 63              | 0.54    | 94<br>880      |
| Murrumhidee                  |                   | N obs  | 12             | 13           | 12           |              | 01          | =            | =            | =            | 12           | 13                | 13                | 14      | 143            |
|                              | La Nina           | Mean   | 242            | 429          | 1023         | 1477         | 1139        | 1629         | 1714         | 1977         | 1520         | 1739              | 1024              | 527     | 1178           |
|                              |                   | sd     | 138 5          | 716.1        | 21382        | 2344.8       | 1 161 1     | 2649.6       | 1647.4       | 1850.4       | 1047 7       | 1493.9            | 8111              | 379.8   | 1601 0         |
|                              |                   | N obs  | 44             | 42           | 43           | 44           | 43          | 44           | 44           | 43           | 42           | 39                | 42                | 41      | 511            |
|                              | Neutral           | Mean   | 303            | 159          | 191          | 299          | 440         | 946          | 1262         | 1846         | 1715         | 1383              | 828               | 458     | 815            |
| 1                            |                   | ps     | 581.6          | 164.0        | 223.9        | 509.8        | 507.0       | 1732.7       | 1.99.1       | 1659 6       | 1092.9       | 1084.6            | 644.1             | 476.1   | 1117.8         |
|                              | i                 | N obs  |                | 12           | 12           | 12           | 14          | 12           | 12           | 13           | 13           | 15                | 12                | 12      | 150            |
|                              | El Nino           | Mean   | 314<br>130.7   | 219<br>319.7 | 156<br>105 7 | 144<br>142 7 | 313.0       | 407<br>388 5 | 782<br>969 7 | 786<br>840 1 | 700<br>7 CPT | 873<br>801.6      | 523<br>468 9      | 5152    | 491            |
| Mean Murrum                  | hidaaa (n-67)     | 20     | 10/2-<br>204   | 111          | 7701         | 465          | 501         | 961          | 1250         | 1662         | 1540         | 1338              | 811               | 447     | 810            |
| P-Value Murrur               | mbidgee (II-0/)   |        | 0.93           | 0 0704       | 0 0187       | 0 0025       | 0.0215      | 0.26         | 0.21         | 0.0876       | 0.10         | 0 12              | 0.16              | 0.51    | 0.0001         |
|                              | 22220             |        | 22.2           |              |              | 140000       | 24220       | 2            | ×            |              | 2 4 2        | 1                 | 2                 |         |                |

| Oceania-Pacific area). |
|------------------------|
| I classification (     |
| according to SO        |
| moff distributions     |
| Monthly ru             |
| Table 53c:             |

| River                           | IOS                | Month         | J          | F          | W              | A              | MA             | JN             | ЛГ             | AU             | S                  | 0              | N              | D        | Total       |
|---------------------------------|--------------------|---------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|----------------|----------------|----------|-------------|
| Nymboida                        |                    | N obs         | 17         | 18         | 16             | 15             | 13             | 15             | 16             | 16             | 17                 | 18             | 18             | 19       | 198         |
|                                 | La Nina            | Mean          | 4987       | 5199       | 5571<br>24/1 2 | 5259<br>5246 A | 3077<br>7786 0 | 3334<br>5535 7 | 2534<br>4461 7 | 1177<br>1951 2 | 808<br>801 1       | 812<br>1108 4  | 1756<br>7357 0 | 1506.0   | 3020        |
|                                 | ļ                  | ou<br>I - I - | 1.0244     | 1700.0     | 22             | 10101          | 50077          | 1.0000         | 7170           | 50             | 112                | 1.0011         | 502            | 10.001   | 610         |
|                                 | Nontrol            | N 005         | 24<br>7303 | 10         | 55<br>2421     | 3175           | 3458           | 8676           | 76<br>1964     | 576 I          | 10<br>10           | 40<br>1088     | 1194           | 1748     | 2110        |
|                                 |                    | ps            | 2920.8     | 3554.5     | 3072.8         | 3152.0         | 3383.5         | 3714.2         | 2316.1         | 1471.1         | 966.1              | 1282.6         | 1552.4         | 1296.2   | 2721.4      |
|                                 |                    | N obs         | 15         | 17         | 17             | 17             | 21             | 18             | 18             | 18             | 18                 | 20             | 18             | 18       | 215         |
|                                 | El Nino            | Mean          | 1543       | 1641       | 2794           | 1444           | 1507           | 1313           | 1065           | 978            | 595                | 1402           | 1128           | 1270     | 1382        |
|                                 |                    | ps            | 10194      | 1259.5     | 2073.1         | 1190.6         | 1789.2         | 1138.2         | 1045.6         | 817.4          | 362.8              | 2269.3         | 1484 1         | 1164.5   | 1467.9      |
| Mean Nymboid                    | da (n=86)          |               | 2701       | 3312       | 3703           | 3165           | 2319           | 2537           | 1882           | 1236           | 868                | 1103           | 1298           | 1469     | 2133        |
| P-Value Nymb(                   | olda               |               | 0.000.0    | 0.0214     | 1610.0         | 0.0082         | 0.28           | 07.0           | 17.0           | 0.0            | 0.24               | ncn            | C+:0           | 1170.0   | 1000.0      |
| Serpentine                      |                    | N obs         | 16         | 17         | 15             | 14             | 12             | 13<br>E        | 14             | 14             | 15                 | 9 <b>e</b>     | 16             | 11       | 6/.1        |
|                                 |                    | sd            | • 0<br>7   | • C        | 0.0            |                | 2.0            | 6 L            | 21.1           | 22.3           | 119                | 10.5           | 2.7            | 13       | ی<br>11.5   |
|                                 |                    | N obs         | 52         | 50         | 52             | 53             | 51             | 53             | 52             | 52             | 51                 | 48             | 49             | 48       | 611         |
|                                 | Neutral            | Mean          | 0          | 0          | 0              | 0              | 1              | <b>%</b>       | 17             | 16             | 11                 | 9              | 1              | 1        | s           |
|                                 |                    | ps            | 0.8        | 0.5        | 0.4            | 0.4            | 1.6            | 9.5            | 16.6           | 13.7           | 9.1                | 4.4            | 21             | 6.0      | 9.6         |
|                                 |                    | N obs         | 14         | 15         | 15             | 15             | 19             | 16             | 16             | 16             | 16                 | 18             | 17             | 17       | 194         |
|                                 | El Nino            | Mean          | • ;        | • ;        | • ;            | • 3            | - )            | 4 (            | r (            | • <sup>0</sup> | 4                  | m (            | - ;            |          | N ,         |
|                                 | (00 -)             | Sd            | 0.4        | 00         | 0.0            | 0.4            | 1.0            | 7.0            | 60             | 1.1            |                    | 7.6            |                | <u>.</u> | 4-0         |
| Mean Serpenti<br>P-Value Sernen | ine (n=82)<br>tine |               | 0.72       | 0.64       | 0.41           | 0.72           | 1.0.68         | 7<br>0.14      | 0.13           | 14<br>0 0483   | 10<br>0.0285       | 0<br>0 0218    | 2<br>0.16      | 0.34     | ء<br>0.0010 |
| Tinindie                        |                    | N ohs         | 9          | L          | 7              | و              | ۲              | 9              | و              | 1              | 7                  | ~              | 7              | 7        | 79          |
| afnindra                        | La Nina            | Mean          | 42         | 21         | - 76           | 22             | 9              | , <b>1</b> 2   | 9 4            | . च            | - un               | • •            | . 1            | . 6      | 14          |
|                                 |                    | sd            | 37.3       | 14.5       | 28.0           | 13.8           | 14.1           | 19.8           | 3.1            | 3.6            | 10.2               | 1.7            | 10             | 11.5     | 20.0        |
|                                 |                    | N obs         | 18         | 16         | 17             | 18             | 17             | 18             | 17             | 16             | 16                 | 15             | 16             | 16       | 200         |
|                                 | Neutral            | Mean          | 16         | 29         | 21             | 11             | -              | 4              | 9              | £              | ę                  | 19             | 7              | ~        | 10          |
|                                 |                    | ps            | 22.1       | 32.5       | 231            | 14.8           | 9.4            | 4.5            | 9.0            | 2.8            | 8.3                | 29             | 4.6            | 25.9     | 18.0        |
|                                 |                    | N obs         | Ś          | 6          | رم<br>م        | S              | 7              | 5              | 9              | 9              | 6                  | 9              | 9              | 9        | 69          |
|                                 | El Nine            | Mean          | 7          | 10         | 20             | ÷              | 7              | ED .           | 1              | -              | -                  | •              | -              | 11       | 4           |
|                                 |                    | sd            | 6.7        | 115        | 18.4           | 12.4           | 1.0            | 2.3            | 0.8            | 0.4            | 0.6                | 0.0            | 6.0            | 2.0      | 8.5         |
| Mean Tipindje                   | e (n=29)           |               | 20         | 23         | 24             | 13             | 900            | 8000           | 5000           | 3              | 3                  | 1030           | 2 70           | 7 0.70   | 10          |
| r-value 1 ipino                 | e                  |               | 0.0464     | 10.0       | 0.47           | 61.0           | 0.20           | /1000          | 070            | 67.0           | cc 0               | 00.0           | 0.10           | 67.0     | C700.0      |
| Des Lacs                        | l e Nine           | N obs         | 0 9        | 00         | o <u>f</u>     | • E            | 4 v            | 04             | 04             | 0 ~            | o -                | - 1            | 0 4            | 0 11     | -<br>       |
|                                 |                    | sd            | 2.6        | 2.8        | 6.4            | 7.7            | 30             | 1.9            | 4.5            | 2.1            | 1.2                | 11             | 3.9            | 21       | 5.1         |
|                                 |                    | N obs         | 17         | 15         | 16             | 17             | 16             | 17             | 17             | 16             | 16                 | 15             | 16             | 16       | 194         |
|                                 | Neutral            | Mean          | ~          | 11         | 2              | 80             | ŝ              | ي<br>مە        | ε              | e j            | -                  | 61 ]           | τņ ¦           | 4        | so.         |
|                                 |                    | sd            | 6.3        | 19         | 4.4            | 6.6            | 3.2            | 5.7            | 1.6            | <u>5</u> 2     | <u></u>            | 4.8            | 8.0            | ,<br>۵۵  |             |
|                                 | El Nino            | N obs         | n 4        | 0 r        | n ¢            | ∩ ₹            | - #            | οw             | 0 4            | n <del>r</del> | n <del>r</del>     | n <del>-</del> | n <b>r</b>     | 0 14     | 00<br>4     |
|                                 |                    | sd            | 4.2        | 58         | 62             | 3.4            | ,<br>1.5       | 5.1            | 1.8            | 2.6            | 18                 | 0.8            | 2.7            | 2.9      | 4.0         |
| Mean Des Lac                    | s (n=27)           |               | 7          | 10         | ~              | 80             | 5              | S              | 3              | 3              | 2                  | 2              | 3              | 4        | 10          |
| P-Value Des Lá                  | ICS                | -             | 0.61       | 0 39       | 0.16           | 0.23           | 0.11           | 0.83           | 0.51           | 0.54           | 0.33               | 0.63           | 0.77           | 0.89     | 0.27        |
| Mataura                         |                    | N obs         | 9          | 7          | 7              | 9              | 5              | 7              | 7              | 7              | 7                  | 80             | 2              | 7        | 81          |
|                                 | La Nina            | Mean          | £ .        | 27         | 44<br>2<br>2   | 45<br>2.5      | 59             | 73<br>10.0     | 53             | 64<br>20 5     | <b>98</b>          | 69             | 62<br>12.0     | 42       | 55          |
|                                 |                    | sd<br>        | 1 61       | 6.8        | 19.8           | 7.12           | 512            | 40.0           | 23.9           | C.65           | 6.67               | 7/1            | 13.9           | 10.4     | 0.12        |
|                                 | Nautrol            | N obs         | 2 <b>2</b> | 18         | 8 <b>0</b>     | 18             | - K            | 1 2            | 10             | 1 5            | - 1                | C 8            | 0 Y            | o 22     | 117<br>64   |
|                                 |                    | ps            | 38.1       | 20.3       | 32.6           | 368            | 37.1           | 32.3           | 28.4           | 41.7           | 29.8               | 42.9           | 202            | 28.6     | 34.5        |
|                                 |                    | N obs         | 7          | 8          | 8              | 6              | 11             | 6              | 8              | 6              | 6                  | 10             | 8              | 80       | 104         |
|                                 | El Nino            | Mean          | 53         | 48         | 69             | 63<br>2        | 16             | 68<br>. 02     | 63             | 73             | 66<br>3            | <b>6</b>       | <b>%</b>       | 69       | 76          |
| Total Material                  | . (2. 3.3)         | SG            | 1 04       | 507        | 600            | 11.4           | 577)<br>19     | 1 40           | 19.0           | +:0C           | 04.7               | 30             | 32.0           | 0.70     | 41.0        |
| P-Value Mataur                  | a (n=33)<br>-a     |               | 1c<br>0 42 | 41<br>0.13 | 0.47           | 50<br>0.54     | 0.32           | 0.53           | 015            | 0.89           | <b>6</b> /<br>0.18 | 0.33           | 0.0285         | 0.19     | 0 0002      |
| I - I and III aranne            | Ia                 |               | 410        | 71.7       | 11.0           | 100            | 47.12          | 2222           | ,<br>,<br>,    | ~~~            | 0110               | 2122           | V.V.L.V.       | ~~~~     | 1777 7      |

| Biver          | IUS       | Month               | -    | (<br>[    | Μ            | V    | MA                | Z              | Ц,<br>П  | AU     | x         | c          | z     | -<br>  | Total         |
|----------------|-----------|---------------------|------|-----------|--------------|------|-------------------|----------------|----------|--------|-----------|------------|-------|--------|---------------|
|                |           |                     |      |           | t            |      |                   |                | 5        |        | ) r       | 0          | ;   r | } г    | 10            |
| Motu           |           | N ODS               | 0    |           | - 1          | 0    | 0                 | -              | -        | - 1    | - 1       | 0          | - 2   | - 1    | 10            |
|                | La Nina   | Mean                | 75   | 49        | 51           | 89   | IOI               | 138            | 671      | vet .  |           | 9CT        | 70    | ŧ      | 701           |
|                |           | ps                  | 43.3 | 21.6      | 43.0         | 47.9 | 57.6              | 45.3           | 74.7     | 39.8   | 71.9      | 47.7       | 31.5  | 61.9   | 61.3          |
|                |           | N obs               | 21   | 19        | 20           | 21   | 20                | 20             | 20       | 20     | 20        | 18         | 20    | 20     | 239           |
|                | Neutral   | Mean                | 56   | 58        | 74           | 59   | 95                | 130            | 135      | 125    | 109       | 87         | 83    | 89     | 91            |
|                |           | ps                  | 29.4 | 46.0      | 55.5         | 36.2 | 40.2              | 58.6           | 47.6     | 50.4   | 40.1      | 62.9       | 50.7  | 41.6   | 53.6          |
|                |           | N obs               | 9    | 2         | 9            | 9    | ∞                 | 9              | 9        | 9      | 9         | 7          | - 6   | 9      | 76            |
|                | El Nino   | Mean                | 37   | 60        | 43           | 83   | 79                | 100            | 87       | 114    | 90        | 65         | 69    | 69     | 74            |
|                |           | sd                  | 30.7 | 78.3      | 30.7         | 38.4 | 26.3              | 61.3           | 37.8     | 97.9   | 26.6      | 18.6       | 81.8  | 40.8   | 53.4          |
| Mean Motu (n   | =33)      |                     | 56   | 56        | 63           | 65   | 92                | 126            | 125      | 130    | 114       | 94         | 80    | 81     | 96            |
| P-Value Motu   |           |                     | 0.15 | 16.0      | 0.33         | 0.43 | 0.58              | 0.44           | 0.16     | 0.33   | 0.0572    | 0.0304     | 0 86  | 0.38   | 0.0049        |
| Ongarue        |           | N obs               | Ś    | 9         | 9            | 9    | 5                 | 7              | 7        | 7      | 7         | 7          | 5     | 5      | 73            |
| 0              | La Nina   | Mean                | 24   | 18        | 10           | 10   | 26                | 52             | 62       | 57     | <b>68</b> | 61         | 32    | 53     | 30            |
|                |           | sd                  | 11.7 | 11.8      | 2.5          | 4.1  | 14.1              | 20.3           | 32.3     | 16.3   | 19.1      | 22.5       | 6.2   | 7.6    | 26.4          |
|                |           | N obs               | 20   | 17        | 17           | 16   | 15                | 15             | 16       | 15     | 15        | 14         | 18    | 18     | 196           |
|                | Neutral   | Mean                | 22   | 19        | 20           | 17   | 30                | 39             | 54       | 47     | 43        | 36         | 30    | 29     | 32            |
|                |           | sd                  | 14.3 | 12.2      | 11.9         | 9 7  | 15.7              | 16.3           | 18.3     | 18.4   | 13.7      | 0.91       | 11.9  | 13.0   | 18.1          |
| _              |           | N obs               | 7    | 6         | 6            | 10   | 12                | 10             | 6        | 10     | 10        | 11         | 6     | 6      | 115           |
|                | El Nino   | Mean                | 21   | 14        | 13           | 18   | <b>2</b>          | 44             | 49       | 56     | 40        | 34         | 32    | 20     | 32            |
|                |           | sd                  | 7.6  | 72        | 5.2          | 6.7  | 11.6              | 23.8           | 25.4     | 34.0   | 13.3      | 10.8       | 25.0  | 7.3    | 21.5          |
| Mean Ongarii   | e (n=32)  |                     | 22   | 17        | 91           | 16   | 31                | 43             | 54       | 52     | 48        | 41         | 31    | 26     | 33            |
| P-Value Ongar  | ue        |                     | 16.0 | 0.38      | 0.0412       | 0.19 | 0.54              | 0.38           | 0.55     | 0.57   | 0.0014    | 0.0064     | 0.95  | 0.12   | 0.0261        |
| Hurmini        |           | N che               | ٩    | -         | L            | 4    | \$<br>}           | 7              | -        | L      | -         | ~          | F     | L      | 81            |
| In Primary     | I a Nino  | Mean                | 5    | , sc      | - <b>6</b> ¢ | 48   | - <b>C</b>        | 56             | . 09     | . 19   | 80        | 85         | 17    | 37     | 5 5           |
|                |           | mcan,<br>ed         | 15.2 | 12.0      | 17.0         | 40.0 | 413               | 20.6           | 35.5     | 20.1   | 44.9      | 33.7       | 16.2  | 6.8    | 32.8          |
|                |           | P.0                 | 00   | 00        |              | 200  | 210               | 10             | 200      | 1.02   | 00        | 10         |       | e e    | 245           |
|                |           | N obs               | 77   | 50        | 21           | 77   | 17                | 17             | 50       | 07     | 07        | <u>8</u> 9 | 07    | 9      | C47           |
|                | Neutral   | Mean                | 4 j  | <u>در</u> | <u>در</u>    | 31   | <b>c</b> c<br>202 | 9 <del>1</del> | <b>6</b> | 70     | 20        | 80.5       | 1 0   | 10     | 44<br>64<br>6 |
|                |           | sd                  | 22.5 | 10.3      | 14.1         | 13.2 | 30.2              | 14.8           | 2.41     | 16.5   | C.22      | 34.1       | 32.1  | 18.4   | 23.8          |
|                |           | N obs               | 9    | 7         | 9            | 9    | 8                 | 9              | 7        | 7      | 7         | œ          | 7     | -      | 82            |
|                | El Nino   | Mean                | 23   | 31        | 37           | 38   | 54                | 47             | 42       | 37     | 50        | 75         | 73    | 99     | 51            |
|                |           | ps                  | 21.8 | 14.5      | 13.4         | 17.5 | 26.0              | 21.9           | 9.5      | 10.0   | 19.8      | 34.1       | 36.8  | 46.8   | 27.9          |
| Mean Hurunt    | ii (n=34) |                     | 43   | 31        | 33           | 39   | 55                | 48             | 49       | 51     | 63        | 74         | 67    | 55     | 51            |
| P-Value Hurur  | Int       | <br> <br> <br> <br> | 0.37 | 0.61      | 0 67         | 0.52 | 0.97              | 0.42           | 0.23     | 0.0274 | 0 0250    | 0.48       | 0 79  | 0.0879 | 0.26          |
| Ahuriri        |           | N obs               | 4    | 5         | 5            | - 6  | 5                 | 7              | 7        | 7      | 7         | 7          | 5     | Ś      | 70            |
|                | La Nina   | Mean                | 16   | 18        | 22           | 20   | 21                | 18             | 14       | 17     | 27        | 35         | 38    | 26     | 23            |
|                |           | ps                  | 3.0  | 6.5       | 9.3          | 13.7 | 10.8              | 5.0            | 3.9      | 8.8    | 19.6      | 13.7       | 58    | 7.1    | 12.1          |
|                |           | N obs               | 20   | 17        | 17           | 15   | 14                | 14             | 15       | 14     | 14        | 13         | 17    | 17     | 187           |
|                | Neutral   | Mean                | 30   | 20        | 23           | 21   | 23                | 18             | 15       | 20     | 19        | 31         | 30    | 36     | 24            |
|                |           | sd                  | 13.7 | 6.1       | 9.2          | 0.6  | 9.6               | 6.4            | 3.4      | 8.1    | 8.4       | 14.3       | 9.4   | 15.5   | 11.7          |
|                |           | N obs               | 7    | 6         | 6            | 10   | 12                | 10             | 6        | 10     | 10        | _ II       | 6     | 6      | 115           |
|                | El Nino   | Mean                | 29   | 18        | 19           | 19   | 20                | 61             | 13       | 16     | 24        | 28         | 38    | 30     | 23            |
|                |           | ps                  | 11.5 | 5.8       | 10.1         | 7.0  | 7.5               | 11.9           | 4.9      | 8.2    | 15.3      | 8.2        | 15.9  | 8.7    | 11.6          |
| Mean Ahuriri   | (n=31)    |                     | 28   | 19        | 22           | 20   | 21                | 18             | 14       | 18     | 23        | 31         | 33    | 33     | 23            |
| P-Value Ahuri. |           | _                   | 0.16 | 0.78      | 0.67         | 0.93 | 0.65              | 0.98           | 0.60     | 0.59   | 0.42      | 0.49       | 0.18  | 0.25   | 0.47          |
|                |           |                     | ĺ    |           |              |      |                   |                |          |        |           |            |       |        |               |

 Table 53d:
 Monthly runoff distributions according to SOI classification ( Oceania-Pacific area).

|                                   | 103      | 7646   |             | 6            |              | .              |              |             |              |              | 0            | 6           | Z           | 6           | Total    |
|-----------------------------------|----------|--------|-------------|--------------|--------------|----------------|--------------|-------------|--------------|--------------|--------------|-------------|-------------|-------------|----------|
| KIVEL                             | 100      | UIUOIA | -<br>       | -            | N            | V              | WW           | ۲ſ (        |              | AV<br>,      |              | > :         | =           |             | total    |
| lone                              |          | N ODS  | <u>e</u> ;  | = ¥          | <u>e</u> ;   | 01<br>10       | ь į          | , <u>;</u>  | y 1          | 10           | 10           | 1           | 11          | 71          | 771      |
|                                   | La Nina  | Mean   | 100<br>26.9 | 90 I<br>90 J | 46.7         | 658<br>859     | 916          | 214 3       | 2116         | 296 I        | 266.0        | 182.2       | 818         | 57.2        | 191.0    |
|                                   |          | N obs  | 30          | 28           | 30           | 30             | 29           | 31          | 30           | 29           | 29           | 26          | 27          | 26          | 345      |
|                                   | Neutral  | Mean   | 110         | 111          | 143          | 270            | 271          | 277         | 335          | 354          | 418          | 367         | 191         | 147         | 250      |
|                                   |          | sd     | 31.4        | 319          | 571          | 177.2          | 1559         | 153.9       | 132.3        | 240.6        | 284.3        | 193.8       | 54.8        | 50.9        | 183.0    |
|                                   |          | N obs  | 80          | 6            | ~            | 8              | 10           | ×           | 6            | 6            | 6            | 11          | 10          | 10          | 109      |
|                                   | El Nino  | Mean   | 100         | 201          | 145<br>38 1  | 224<br>46.8    | 202          | 5 02        | 458<br>361 6 | 405<br>263.8 | 266<br>208 5 | 249<br>96.7 | 34.4        | 171         | 2010     |
| Mean Tone (n=                     | 48)      | ,      | 108         | 108          | 142          | 268            | 257          | 282         | 373          | 376          | 454          | 328         | 187         | 141         | 252      |
| P-Value Tone                      | Î        |        | 0 63        | 0 71         | 0.94         | 0 57           | 0.37         | 0 83        | 0 24         | 0 52         | 0 43         | 0 17        | 0 0270      | 0.36        | 0 93     |
| Ishikari                          |          | N obs  | 9           | L            | 7            | L              | 9            | 1           | 7            | 8            | . 80         | 6           | 8           | 8           | 88       |
|                                   | La Nina  | Mean   | 234         | 233          | 278          | 1253           | 805          | 433         | 364          | 608          | 454          | 491         | 498         | 350         | 498      |
|                                   |          | sd     | 102.6       | 70.0         | 84.7         | 198 9          | 2310         | 73.3        | 1416         | 2211         | 132.0        | 1543        | 1364        | 52.0        | 3001     |
|                                   |          | N obs  | 21          | 19           | 20           | 20             | 19           | 20          | 19           | 18           | 18           | 16          | 17          | 17          | 224      |
|                                   | Neutral  | Mean   | 218         | 200          | 288          | 1207           | 831          | 326         | 296          | 540          | 385          | 372         | 418         | 338         | 454      |
|                                   |          | sd     | 551         | 42.9         | 1 66         | 449.5          | 3314         | 10          | 143.7        | 4/9/         | 1917         | 133.9       | 6 771       | 84 /        | 300 D    |
|                                   |          | N obs  | 5           | 900          | ŝ            | 5              | 700          | o f         | 0 j          | οġ           | 0            |             |             |             | 21       |
|                                   | El Nino  | Mean   | 253         | 208          | 365<br>110 5 | 1032           | 568<br>C 014 | 419         | 61.5<br>63.5 | 380<br>112 s | 240<br>230 S | 474         | 474 F       | 400<br>60 7 | 308.8    |
|                                   |          | 80     | 1 00        | 6.60         | 201          | C / CC         | 410.2        | 10.0        | 500          | 112.0        | 0.064        | C 001       | 027         | 355         | 0.000    |
| Mean ISnikari<br>P-Value Ishikari | (D=52)   |        | 177         | 140          | 82.0         | 0.65           | 0.88         | 40°         | 507<br>0.43  | 0.50<br>0.50 | 0.15         | 0 17        | 0.2900      | 61.0        | 0.59     |
| F-Value Isilinal                  |          | NI ALA |             | 117          | 47 0         | 5              | 2000         | ~~~~~       | Ct v         | 00710        | CT10         | 11.0        | 2.2700      | ŝ           | 27<br>72 |
|                                   | I a Nina | Mean   | ر<br>۲۲     | 4<br>370     | 482          | 1107           | 609          | 543         | 002          | 521          | 526          | 375         | 414         |             | 496      |
|                                   | T'A MIN  | sd     | 4/4<br>61 5 | 070<br>658   | 1001         | 220.4          | 107.2        | 5 66        | 2 202        | 9.69         | 216.8        | 754         | 629         | 71.6        | 244.0    |
|                                   |          | N obs  | 16          | 14           | 15           | 14             | 13           | 13          | 13           | 12           | 12           | 11          | 13          | 13          | 159      |
|                                   | Neutral  | Mean   | 308         | 298          | 458          | 1050           | 805          | 665         | 690          | 442          | 565          | 432         | 404         | 359         | 538      |
|                                   |          | sd     | 84.0        | 101 5        | 1064         | 188 4          | 253 3        | 5207        | 348.9        | 2156         | 458 3        | 133.3       | 1171        | 65.5        | 3310     |
|                                   |          | N obs  | s           | 9            | 5            | 9              | 8            | 6           | 9            | 9            | 9            | 7           | 6           | 6           | 73       |
|                                   | El Nino  | Mean   | 364         | 405          | 930          | 1066           | 695          | 444         | 558          | 467          | 514          | 1/2         | 365         | 405         | 538      |
|                                   |          | sd     | 421         | 196.0        | 8464         | 249.0          | 278.7        | 228.1       | 338 1        | 248 1        | 255 5        | 694         | 145 4       | 904         | 360.0    |
| Mean Shinano                      | (n=24)   |        | 315         | 328          | 560          | 1064           | 169          | 584         | 636          | 418          | 542          | 371         | 396         | 372         | 530      |
| P-Value Shinan                    | 0        |        | 0 23        | 0 25         | 0.07         | 0 89           | 0.60         | 0.55        | 0.67         | 0.42         | 960          | 0.02        | 005/.0      | 0.40        | 0 09     |
| Yodo                              |          | N obs  | ε           | 4            | <del>च</del> | 4              | . 3          | ŝ           | 5            | 9            | 9            | 9           | v ç         | ŝ           | 26       |
|                                   | La Nina  | Mean   | 154<br>27.0 | 194          | 281          | 369<br>9 101 8 | 242<br>64 8  | 378         | 556<br>357 7 | 275          | 331<br>225 1 | 190         | 139<br>33.5 | 43.7        | C/7      |
|                                   |          | N ohe  | 16          | 14           | 15           | 14             | 13           | 13          | 13           | 12           | 12           |             | 13          | 13          | 159      |
|                                   | Neutral  | Mean   | 157         | 169          | 222          | 323            | 308          | 396         | 583          | 236          | 350          | 212         | 142         | 147         | 268      |
|                                   |          | sd     | 617         | 60.0         | 567          | 114 8          | 86.0         | 208 1       | 4347         | 131.1        | 307 8        | 87.2        | 33.2        | 54.5        | 210.5    |
|                                   |          | N obs  | S           | 9            | 5            | 6              | 8            | 9           | 9            | 9            | 9            | 7           | 9           | 6           | 73       |
|                                   | El Nino  | Mean   | 194         | 235          | 417          | 317            | 298<br>101 0 | 300         | 532          | 312          | 356          | 142         | 124         | 126         | 277      |
| Man Vada (n                       | 140      | 201    | 100         | 7.7CT        | 0.1.60       | 104 0          | 101 0        | 140.4       | 2010         | 326          | 1 007        | 196         | 127         | 140         | 777      |
| P-Value Yodo                      | (+7=     |        | 190         | 035          | 114          | 0.74           | 12.0         | 306<br>D 67 | 2005<br>0.96 | C17          | 66.0         | 0.13        | 0 5400      | 0.66        | 760      |
| Chiknen                           |          | N obs  | 10.0        | 4            | 4            | 4              | 312          | 502         | 22.5         | 6            | 6            | 6           | 5           | 5           | 56       |
| -                                 | La Nina  | Mean   | 66          | 56           | -1-          | 94             | 85           | 217         | 243          | 122          | 124          | 69          | 47          | 66          | 105      |
| _                                 |          | sd     | 60          | 23.0         | 25 2         | 39.7           | 266          | 100 6       | 63 2         | 83 2         | 32.1         | 113         | 86          | 69          | 79.0     |
|                                   |          | N obs  | 16          | 14           | 15           | 14             | 13           | 13          | 13           | 12           | 12           | П           | 13          | 13          | 159      |
|                                   | Neutral  | Mean   | 48          | 57           | 78           | 98             | 102          | 238         | 299          | 127          | 161          | 92          | 68          | 54          | 116      |
|                                   |          | sd     | 10.4        | 17.2         | 27.8         | 37.8           | 46.6         | 142 3       | 195 5        | 1469         | 1631         | 37.0        | 44.8        | 131         | 1186     |
|                                   |          | N obs  | ŝ           | ę            | S            | 9              | 8            | 9           | 9            | 6            | 6            | 2           | 6           | 9           | 73       |
|                                   | El Nino  | Mean   | 65          | 74           | 174          | 911            | 125          | 199         | 447          | 155          | 109          | 7           | 57          | 49          | 136      |
|                                   |          | ps     | 174         | 164          | 170.8        | 30.1           | 51.5         | 1003        | 174 1        | 104 1        | 497          | 196         | 14.8        | 121         | 128 8    |
| Mean Unkugo                       | (n=24)   |        | D2 00       | 61<br>0 13   | 98<br>200    | 70T            | 105          | 677         | 524<br>014   | 133          | 139          | 90          | 10          | 0 08        | 20.0     |

Table 54a: Monthly runoff distributions according to SOI classification ( Far East Asia area).

| (Far East Asia area). |
|-----------------------|
| I classification      |
| g to SO               |
| s accordin            |
| distributions         |
| runoff                |
| Monthly               |
| Table 54b:            |

| River                          | SOI                     | Month        | J          | F            | W           | A                 | MA            | Nľ              | JL              | AU              | S               | 0               | z            |                 | Tota         |
|--------------------------------|-------------------------|--------------|------------|--------------|-------------|-------------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|-----------------|--------------|
| Changjiang                     |                         | N obs        | 23         | 23           | 21          | 20                | 18            | 19              | 22              | 23              | 24              | 25              | 24           | 25              | 267          |
|                                | La Nina                 | Mean         | 7424       | 7735         | 10201       | 15923             | 25178         | 31974           | 42282           | 40848           | 37375           | 32732           | 21621        | 1198            | 23723        |
| 1                              | Ĩ                       | ps           | 1819.8     | 2210.9       | 3270.7      | 3499.7            | 5876.8        | 5028.6          | 5388.1          | 6558.1          | 6579.5          | 7505.8          | 6967.2       | 3152.7          | 13701.8      |
|                                | _                       | N obs        | 68         | 99           | 69          | 71                | 70            | 11              | 68              | 68              | 67              | 64              | 65           | 63              | 810          |
|                                | Neutral                 | Mean         | 7574       | 8052         | 10791       | 15519<br>2077 0   | 24856         | 30483<br>5007 7 | 41128<br>6034 5 | 39782<br>7913 6 | 37009<br>7807 A | 31026<br>7607 7 | 20891        | 11564<br>3467 D | 23272        |
|                                |                         | N abe        | 0.1001     | 7.107        | 01          | 18                | C.1CCC        | 100             | 10              | 81              | 18              | 2.2001          | 20           | 16              | 1.02201      |
|                                | DI Nime                 |              | 01         | 07<br>0135   | 11767       | 17017             | 12826         | 10058           | 36005           | 36800           | 24444           | 38765           | 20615        | 1222            | 22162        |
|                                |                         | sd           | 2743.1     | 1980.5       | 4070.5      | 3953.7            | 4944.4        | 7574.0          | 8276.4          | 6917.8          | 7638.2          | 7114.8          | 6068.5       | 3724.2          | 11773.6      |
| Mean Changlia                  | ung (n=109)             |              | 7715       | 8000         | 10838       | 15840             | 24713         | 30494           | 40625           | 39515           | 36666           | 31002           | 21001        | 11609           | 23168        |
| P-Value Change                 | lang                    |              | 60 0       | 0.78         | 0.76        | 0.35              | 0.69          | 0.34            | 0.03            | 0.20            | 0.39            | 0.22            | 0.8600       | 0.59            | 0.39         |
| Songhuajiang                   |                         | N obs        | 18         | 18           | 16          | 15                | 13            | 14              | 15              | 16              | 17              | 19              | 19           | 20              | 200          |
| )<br>)<br>)                    | La Nina                 | Mean         | 267        | 216          | 239         | 955               | 1295          | 1514            | 1889            | 2931            | 2294            | 1680            | 1138         | 474             | 1211         |
|                                |                         | ps           | 175.5      | 148.2        | 163.4       | 296.0             | 446.5         | 541.5           | 686.8           | 1746.8          | 11713           | 983.0           | 630.9        | 244 2           | 1119.6       |
|                                |                         | N obs        | 57         | 56           | 09          | 61                | 59            | 61              | 59              | 59              | 58              | 54              | 55           | 53              | 692          |
|                                | Neutral                 | Mean         | 267        | 217          | 247         | 940               | 1189          | 1231            | 1734            | 2581            | 2524            | 1798            | 687          | 461             | 1187         |
| _1                             |                         | sd           | 146.7      | 136.3        | 1604        | 361.8             | 427.0         | 560.8           | 1030.3          | 16234           | 1368.1          | 984 5           | 535.4        | 260.2           | 11263        |
|                                |                         | N obs        | 15         | 16           | 14          | 14                | 18            | 15              | 16<br>1500      | 15              | 15              | 17              | 16           | 17              | 188          |
|                                | El Nino                 | Mean         | 262        | 222<br>186 q | 248<br>1668 | 924<br>356 3      | 1347<br>634 5 | 1324<br>629.7   | 17.39<br>824.3  | 2801<br>1416 8  | 3157<br>2019.0  | 1918            | 806<br>465.0 | 205.2           | 1263         |
| Mann Conchurc                  | (100 (a) (a)            |              | 276        | 117          | 145         | 040               | 1126          | 1300            | 1761            | 0896            | 7586            | 1705            | 687          | 453             | 1205         |
| Mean Songnua<br>P-Value Songhu | tjiang (n=90)<br>tanang |              | <b>007</b> | 66.0         | <b>CH7</b>  | 0 <del>6</del> .0 | 0.42          | 0.24            | 0.85            | 0.71            | 0.22            | 0.78            | 0.2100       | 0 64            | 0.72         |
| Yonedine                       |                         | N obs        | 12         | 13           | 12          | Ξ                 | 6             | 10              | 10              | =               | 12              | 13              | 13           | 14              | 140          |
| 4                              | La Nina                 | Mean         | 18         | 20           | 64          | 48                | 41            | 20              | 89              | 52              | 35              | 28              | 24           | 21              | 36           |
|                                |                         | ps           | 8.7        | 9.11         | 30.2        | 23.3              | 21.5          | 35.1            | 71.3            | 61.6            | 29.0            | 20.1            | 14.9         | 11.5            | 34.5         |
|                                |                         | N obs        | 42         | 40           | 42          | 43                | 43            | 44              | 43              | 42              | 41              | 38              | 40           | 39              | 497          |
|                                | Neutral                 | Mean         | 61         | 19           | 44          | 37                | 33            | 46              | 84              | 56              | 46              | 29              | 26           | 20              | 66           |
|                                |                         | sd           | 11.5       | 10.8         | 27.0        | 22.2              | 29.3          | 35.0            | 92.3            | 44.8            | 40.2            | 20.0            | 13.0         | 12.1            | 41.2         |
|                                |                         | N obs        | 10         | 11           | 10          | 10                | 12            | 10              | 11              | 11              | 11              | 13              | Ξ            | 11              | 131          |
|                                | El Nino                 | Mean         | 18         | 14           | 40          | 30                | 31            | 39              | 61              | 61              | <del>4</del>    | 28              | 72           | 50              | 34           |
|                                |                         | sd           | 13.3       | 9.6          | 33.0        | 13.6              | 20.5          | 24.2            | 45.6            | 62.2            | 29.2            | 20.5            | 19.0         | 13.9            | 317          |
| Mean Yongdin                   | g (n=64)                |              | 19         | 19           | 43          | 38                | 34            | 45              | 77              | 56              | 43              | 29<br>29        | 25           | 20              | 37           |
| P-Value Yongdi                 | Ing                     |              | 0.88       | 0 33         | 0.93        | 0.15              | 0 67          | 67.0            | 0.68            | 0.92            | 0.62            | 16.0            | 0.058.0      | 16.0            | 0.40         |
| Jinghe                         | ;                       | N obs        | 10         | = :          | 10          | 10                | 6             | 6               | 6               | 10              | 10              | = -             | = 1          | 12              | 122          |
|                                | La Nina                 | Mean<br>ed   | 77         | 75<br>8 7    | 47          | 20<br>2 4 5       | 316           | 0C<br>45.7      | 171             | 106.0           | 071             | <b>103</b>      | 70 T         | 96<br>9 - 1     | 00<br>5 59   |
|                                |                         | N obc        | 0''<br>36  | 70           | 36          | 92                | 35            | 1.54            | 36              | 35              | 35              | 37              | 33           | 32              | 417          |
|                                | Neutral                 | Меап         | 2 R        | t 2          | 64          | 2,2               | 2 <b>2</b>    | 6 4             | 9 <b>1</b> 1    | 155             | 124             | 77              | 14           | 27              |              |
|                                |                         | ps           | 5.9        | 6.9          | 12.6        | 13.9              | 25.9          | 20.5            | 65.8            | 119.8           | 91.7            | 44 0            | 19.0         | 7.6             | 65.6         |
| ·                              |                         | N obs        | 8          | 6            | 8           | 8                 | 10            | ∞               | 6               | 6               | 6               | 11              | 10           | 10              | 109          |
|                                | El Nino                 | Mean         | 16         | 27           | 42          | 35                | 39            | 28              | 147             | 107             | 85              | 46              | 35           | 21              | 52           |
|                                |                         | sd           | 4.5        | 80           | 101         | 10.7              | 215           | 9.0             | 119.4           | 89.5            | 83.6            | 40.2            | 25.1         | 5.6             | 62 4         |
| Mean Jinghe (i                 | n=54)                   |              | 50         | 29<br>29     | 42          | 35<br>25          | 30<br>90      | <b>4</b> 0<br>2 | 117             | 149             | 117             | 73<br>8 83      | 46           | 27              | 61           |
| P-Value Jinghe                 |                         |              | 0.10       | 67.0         | 66.0        | 10.0              | 66.0          | 0.22            | <i>cc.</i> 0    | 0.40            | UC.U            | 50.0            | 0012.0       | 0.14            | 17.0         |
| Wujiang                        |                         | N obs        | 0 20       | = ::         | 01          | 6                 | 8             | 8               | 8               | 6               | 6               | 01 20           | 10           | II 200          | 113          |
|                                | La Nina                 | Mean         | 167        |              | 908<br>91   | 8/0               | 71407         | 8887            | 10:01           | 14/2            | 1441            | 0.066           | /40          | 100.0           | 1044         |
| _ 1 _                          |                         | SQ<br>M - F- | 00.0       | 100          | 0.1/        | 5/0.5             | 547.5<br>27   | 1137.1          | 411.2           | 8.040           | 34/9            | 1./66           | 0.755        | 7.771           | 0.040<br>A12 |
|                                | Norther                 |              | 17         | 2 <b>51</b>  | 17          | 07<br>LUD         | 12            | 07<br>1601      | 17              | 1775            | 1300            | 24<br>1133      | 3 <b>5</b>   | 17 t            | 1167         |
|                                | Neuri ai                | sd           | 070        | 331<br>126.0 | 157.6       | 281.8             | 537.3         | 996.6           | 1027.1          | 883.9           | 793.0           | 620.0           | 286.4        | 109.5           | 985.5        |
|                                |                         | N obs        | 4          | ∞            | 1           | 7                 | 6             | ~               | 6               | 6               | 6               | 10              | 6            | 6               | 101          |
|                                | El Nino                 | Mean         | 343        | 290          | 492         | 804               | 1656          | 2445            | 1958            | 1711            | 1446            | 1198            | 875          | 519             | 1176         |
|                                |                         | sd           | 1108       | 525          | 238.8       | 637.2             | 4577          | 1186.3          | 997.8           | 808 4           | 628.0           | 402.1           | 2403         | 176.9           | 875.8        |
| Mean Wujiang                   | ; (n≈44)                |              | 323        | 331<br>201   | 414         | 819               | 1733          | 2627            | 2187            | 1671            | 1364            | 1108            | 723          | 410             | 1142         |
| P-Value Wujian                 | 3                       |              | 0.47       | 0.31         | 0.29        | 0.90              | 0.25          | 0.69            | 60.0            | 0.71            | 0 82            | 0.66            | 0.0/1.0      | 0.02            | C4:U         |

| ( Far East Asia area). |
|------------------------|
| OI classification      |
| ons according to S     |
| runoff distribution    |
| 4c: Monthly 1          |
| Table 5                |

| River           | IOS                | Month | J          | F     | М          | A          | MA           | Nľ                    | JL     | AU     | s      | 0          | z         | D           | Total   |
|-----------------|--------------------|-------|------------|-------|------------|------------|--------------|-----------------------|--------|--------|--------|------------|-----------|-------------|---------|
| Huanghe         |                    | N obs | 80         | 6     | .00        | 8          | 7            | 6                     | 6      | 10     | 10     | 11         | 10        | 11          | 110     |
|                 | La Nina            | Mean  | 581        | 605   | 1089       | 1178       | 1151         | 1100                  | 2084   | 2710   | 2597   | 2615       | 1751      | 809         | 1574    |
|                 |                    | ps    | 154.6      | 237.7 | 4313       | 302.2      | 650.5        | 652.9                 | 920.8  | 1379.5 | 1387.9 | 1395.9     | 843.1     | 398.7       | 1150.8  |
|                 |                    | N obs | 26         | 24    | 25         | 25         | 24           | 24                    | 23     | 22     | 22     | 20         | 23        | 22          | 280     |
|                 | Neutral            | Mean  | 574        | 537   | 973        | 995        | 976          | 863                   | 2130   | 3121   | 3332   | 2762       | 1359      | 773         | 1484    |
|                 |                    | ps    | 183.2      | 198.1 | 314.8      | 285.8      | 416.9        | 489.8                 | 963.7  | 1255.8 | 1357 4 | 1109.6     | 610.0     | 293.4       | 1197.5  |
|                 |                    | N obs | 9          | 7     | 7          | 7          | 6            | 7                     | ×      | 8      | ~      | 6          | -         | 1           | 06      |
|                 | El Nino            | Mean  | 458        | 414   | 106        | 946        | 150          | 754                   | 1791   | 2161   | 1459   | 1121       | 831       | 560         | 1068    |
|                 |                    | sd    | 81.2       | 135.2 | 292.4      | 345./      | 3114         | 240.1                 | 1.008  | 1159.2 | 4.0.4  | 080.2      | 7.707     | 93.3        | C.UZ1   |
| Mean Huangh     | ; (n=40)           |       | 558        | 531   | 984        | 1023       | 966          | 897                   | 2052   | 2826   | 2774   | 2372       | 1364      | 746         | 1427    |
| P-Value Huang   | Je                 |       | 0.29       | 0.17  | 0.54       | 0.26       | 0.58         | 035                   | 0.67   | 0.19   | 0.00   | 0.00       | 0.0210    | 0.21        | 0.00    |
| Beijiang        |                    | N obs | 9          | 7     | 7          | 4          | - 6          | 7                     | 7      | 80     | ~      | 6          | 80        | ∞           | 88      |
|                 | La Nina            | Mean  | 344        | 544   | 694        | 1333       | 2462         | 3143                  | 1672   | 1265   | 897    | 619        | 500       | 419         | 1128    |
|                 |                    | sd    | 101.9      | 381.8 | 590.8      | 796.0      | 13365        | 912.2                 | 803.5  | 5045   | 492.9  | 385.8      | 195.2     | 189.7       | 1007.1  |
|                 |                    | N obs | 22         | 20    | 21         | 21         | 20           | 21                    | 20     | 19     | 19     | 17         | 19        | 19          | 238     |
|                 | Neutral            | Mean  | 290        | 415   | 776        | 1842       | 2368         | 2674                  | 1287   | 1018   | 904    | 500        | 387       | 271         | 1077    |
|                 |                    | sd    | 151.4      | 197.5 | 395 9      | 666.0      | 1077.6       | 1382.1                | 629.0  | 403.6  | 729.6  | 234.1      | 145 7     | 57.7        | 1020.7  |
|                 |                    | N obs | 9          | 7     | 9          | 6          | ~            | 9                     | 7      | 7      | 7      | 8          | 7         |             | 82      |
|                 | El Nino            | Mean  | 652        | 684   | 1285       | 1430       | 2439         | 1797                  | 968    | 1100   | 605    | 549        | 538       | 426         | 1038    |
|                 |                    | sd    | 527.4      | 600.5 | 1611.6     | 457.9      | 918.0        | 525.2                 | 333.6  | 257.0  | 304.2  | 236.4      | 249.0     | 266.1       | 842 9   |
| Mean Beijiang   | (n=34)             |       | 363        | 497   | 849        | 1664       | 2401         | 2616                  | 1300   | 1093   | 841    | 559        | 445       | 338         | 1080    |
| P-Value Beilian | 01                 |       | 0.01       | 0 22  | 0.31       | 0.15       | 0.98         | 0.14                  | 0.12   | 0.36   | 0.53   | 0.32       | 0.1200    | 0.03        | 0.83    |
| Dongijang       |                    | N obs | 5          | 9     | 9          | 5          | 4            | 5                     | Ś      | 9      | 9      | 6          | 6         | 9           | 67      |
|                 | La Nina            | Mean  | 325        | 379   | 343        | 533        | 1154         | 1794                  | 1120   | 1021   | 1081   | 825        | 449       | 395         | 765     |
|                 |                    | ę     | 122.7      | 139.5 | 152.6      | 179.4      | 919.3        | 435.3                 | 410.1  | 9.20F  | 552.5  | 400.8      | 129.3     | 108.6       | 545.3   |
|                 |                    | Nobe  | 18         | 16    | 17         | 17         | 16           | 17                    | 17     | 16     | 16     | 14         | 16        | 16          | 196     |
|                 | Neutral            | Mean  | 361        | 126   | 356        | 686        | 666          | 1616                  | 1102   | 1081   | 1022   | 555        | 475       | 414         | 751     |
|                 |                    | ed.   | 141 4      | 137.4 | 135.4      | 342.6      | 372.0        | 904.5                 | 378.6  | 350.5  | 617.7  | 235.9      | 152.1     | 143.2       | 554.2   |
| •               |                    | N ohe |            |       |            | 6          | 8            | 6                     | 66     | 2000   | 9      |            | 6         | 6           | 73      |
|                 | El Nino            | Mean  | 360        | 472   | 920        | 867        | 1183         | 1241                  | 903    | 1123   | 657    | 481        | 395       | 329         | 755     |
|                 |                    | sd    | 145.0      | 399.5 | 984.2      | 597.6      | 3867         | 323.0                 | 232.4  | 245.6  | 150.6  | 101.4      | 104.1     | 77.8        | 481.4   |
| Mean Donoiiar   | 10 (n=28)          |       | 354        | 366   | 454        | 697        | 1074         | 1567                  | 1062   | 1077   | 956    | 604        | 452       | 392         | 755     |
| P-Value Dongia  | 16 (11-20)<br>30 P |       | 0.87       | 0.36  | 000        | 0.38       | 0.63         | 0.45                  | 0.48   | 0.86   | 0.32   | 0.05       | 0.4900    | 0.38        | 86.0    |
| Vano            | 2                  | N obe | 100        | 11    | 10         | 0          | 0            | o                     | 0      | 10     | 01     | =          | 1         | 12          | 127     |
| PIPT            | La Nina            | Mean  | -<br>-     | - 1   | 2 0        | 2 <b>-</b> | 468          | 1471                  | 2344   | 1953   | 020    | 151        | 38        | 10          | 721     |
|                 | 24.1114            | sd    | • <u>~</u> | 10.5  | 20<br>2    | 0.7        | 454.8        | 928.3                 | 1018.2 | 478.7  | 465.0  | 68.8       | 24.9      | 11.8        | 1167.9  |
|                 |                    | N obs | 29         | 27    | 29         | 29         | 28           | 30                    | 29     | 28     | 28     | 26         | 27        | 26          | 336     |
|                 | Neutral            | Mean  | 1          | 1     | 0          | 0          | 644          | 3831                  | 3212   | 2492   | 1265   | 190        | 38        | œ           | 1005    |
|                 |                    | sd    | 1.3        | 6.0   | 0.9        | 0.8        | 643.7        | 1272.2                | 914.7  | 1172.6 | 549.2  | 118.2      | 17.5      | 5.5         | 1505.0  |
|                 |                    | N obs | 8          | 6     | ∞          | 8          | 10           | 8                     | 6      | 6      | 6      | 10         | 6         | 6           | 106     |
|                 | El Nino            | Mean  | 4          | Ð     | 7          | e,         | 768          | 3091                  | 2832   | 2116   | 1447   | 170        | 35        | 80          | 869     |
|                 |                    | sd    | 3.3        | 3.7   | 4.5        | 4.4        | 444.7        | 677.4                 | 1089.5 | 580.5  | 625 4  | 46.1       | 9.0       | 1.8         | 1211.8  |
| Mean Yana (n    | =47)               |       | 5          | 1     | -          | 1          | 637          | 3636                  | 2973   | 2305   | 1235   | 177        | 37        | و<br>و<br>ز | 918     |
| P-Value Yana    |                    |       | 0.01       | 0.00  | 0.05       | 0.03       | 0.53         | 0.25                  | 0.07   | 0.27   | 0.15   | 0.53       | 0.9300    | 0.66        | 0.14    |
| Penzhina        |                    | N obs | 5          | 9     | 9          | S          | 4            | ŝ                     | ŝ      | 9      | Q      | 7          | 9         | 9           | 67      |
|                 | La Nina            | Mean  | 42         | 31    | 25         | 23         | 478          | 4232                  | 904    | 626    | 916    | 443        | 113       | 62          | 622     |
|                 |                    | sd    | 13.9       | 92    | 5.1        | 7.5        | 185.3        | 684.6                 | 309.5  | 181.9  | 712.6  | 274.7      | 27.6      | 19.2        | 1121.7  |
|                 |                    | N obs | 18         | 16    | 17         | 18         | 17           | 18                    | 17     | 16     | 16     | 15         | 16        | 16          | 200     |
|                 | Neutral            | Mean  | 90<br>90   | 5     | 21         | 54         | 655<br>121 B | 4104                  | 1229   | 1066   | 798    | 362        | 95<br>315 | 50          | 726     |
|                 |                    | 2g    | 10:0       | Q.1   | ,<br>S     | ۵¢         | 401.0        | 7.4/01                | 1.90   | 1710   | 430 /  | 211.4      | 34.0      | C.61        | 1 200 / |
|                 |                    | N ODS | 0 }        | ډ م   | ∩ <b>8</b> | o ;        | 1            | n je                  | 0      | 0      | 0      | с <b>ў</b> | ¢         | 0 (         | 60      |
|                 | EI NIIO            | Mean  | 96<br>8 () | 9 Ç   | 07         | ç ×        | 405<br>289.7 | <b>3804</b><br>1182 9 | 343.7  | 8.792  | 1818   | 213.3      | 34.9      | 00          | 1091.5  |
| Mean Penzhin:   | 1 (n=28)           |       | 33         | 25    | 22         | 24         | 567          | 4084                  | 1203   | 917    | 930    | 384        | 102       | 55          | 695     |
| P-Value Penzhi  | 18                 | -     | 0.08       | 0.11  | 0.21       | 0.91       | 035          | 16.0                  | 0 42   | 0.02   | 0.23   | 0.73       | 0 4000    | 0.28        | 0.82    |
|                 |                    |       |            |       |            |            |              |                       |        |        |        |            |           |             |         |

| a).        |
|------------|
| are        |
| Asia       |
| ast        |
| E          |
| (Fai       |
| Ĩ          |
| Iţi        |
| ific       |
| ass        |
| 5          |
| 5          |
| ŝ          |
| ъ<br>Б     |
| ii.        |
| ord        |
| 5          |
| IS 3       |
| ioi        |
| out        |
| ii.        |
| list       |
| Ĕ          |
| ou         |
| Ľ          |
| ly         |
| nt         |
| Чо         |
| <b>F</b> 4 |
| ij         |
| 5          |
| ble        |
| Га         |

| River            | SOI       | Month       | J            | F         | M              | Y           | MA                 | Nſ             | JI           | AU                 | s          | 0            | z             |            | Total        |
|------------------|-----------|-------------|--------------|-----------|----------------|-------------|--------------------|----------------|--------------|--------------------|------------|--------------|---------------|------------|--------------|
| Indigirka        |           | N obs       | 11           | 12        | 11             | 11          | 10                 | 11             | Ξ            | 11                 | 11         | 12           | 12            | 13         | 136          |
| _                | La Nina   | Mean        | 39<br>11 f   | 19        | 11             | so ;        | 215                | 5416<br>1207 0 | 4394         | 4099               | 2630       | 543<br>214 5 | 135           | 69<br>27.0 | 1426         |
|                  |           | Sd<br>M -L- | <u>C.I.I</u> | 275       | 3.1            | 1.7         | 47077              | 6./071         | 47/271       | 1146.0             | <u> </u>   | 20           | 20 0          | 21.7       | 200          |
|                  | Mandad    | N ODS       | 05 5         | ς, ε      | 4<br>4         | 40 <b>0</b> | 501<br>101         | 5460           | 5807         | 55<br>4 <b>585</b> | 55<br>1583 | 25           | رد<br>134     | 75         | 1684         |
|                  | Inaula    | sd          | 9.6<br>8.6   | 5.2       | 3.7            | <b>2</b> .6 | 542.2              | 1710.0         | 1415.1       | 1687.8             | 1055 6     | 212.9        | 38.6          | 1 61       | 2460.4       |
|                  |           | N obs       | 11           | 13        | 13             | 13          | 15                 | 13             | 13           | 14                 | 14         | 16           | 13            | 13         | 161          |
|                  | El Nino   | Mean        | 31           | 16        | 12             | <b>%</b>    | 163                | 5490           | 5033         | 3870               | 2484       | 452          | 122           | 69         | 1483         |
|                  |           | sd          | 5.9          | 3.2       | 4.0            | 4.4         | 140.5              | 1667.8         | 1203.3       | 1231.1             | 761.3      | 110.5        | 28.1          | 15.6       | 2158.6       |
| Mean Indigirk    | a (n=58)  |             | 36           | 19        | 12             | 8           | 298                | 5640           | 5415         | 4320               | 2568       | 527          | 133           | 72         | 1587         |
| P-Value Indigu   | ka        |             | 0.08         | 0.07      | 0.67           | 0.68        | 0.22               | 0.77           | 0.01         | 0.29               | 0.93       | 0 27         | 0.4700        | 0.54       | 0.43         |
| Lena             |           | N obs       | 11           | 12        | 11             | 11          | 10                 | 11             | 11           | 11                 | 11         | 12           | 12            | 13         | 136          |
|                  | La Nina   | Mean        | 2599         | 1906      | 1493           | 1194        | 6270               | 78332          | 40796        | 29646              | 25265      | 11709        | 3097          | 2758       | 16704        |
|                  |           | sd          | 611.3        | 576.6     | 465 5          | 396.2       | 6883.4             | 11436.4        | 9586.7       | 85985              | 5592.8     | 3919.1       | 686.1         | 532.6      | 22909.0      |
|                  |           | N obs       | 38           | 35        | 36             | 36          | 35                 | 36             | 36           | 35                 | 35         | 32           | 35            | 34         | 423          |
|                  | Neutral   | Mean        | 2875         | 2226      | 1637           | 1322        | 7198<br>1066 4     | 73465          | 40086        | 09072              | 25018      | 12040 2      | 9965<br>0 207 | 2954       | 1095/        |
|                  |           | N ohe       | 11           | 1.160     | 539.4          | 13          | 15                 | 8.1/C11<br>13  | C.C/00       | 1.6120             | 14         | 6.00%c       | 6.071         | 13         | 1.00012      |
|                  | El Nino   | Mean        | 2650         | 2109      | 1826           | 1560        | 3968               | 71433          | 37627        | 26252              | 21002      | 12724        | 3615          | 3028       | 15710        |
|                  |           | sd          | 613.1        | 662.0     | 708.5          | 683.8       | 2655 7             | 6998.8         | 5956.2       | 4725.3             | 5516.2     | 3330.5       | 1907.6        | 1229.4     | 20340.6      |
| Mean Lena (n=    | =60)      |             | 2783         | 2137      | 1652           | 1350        | 6236               | 73917          | 39683        | 27340              | 24126      | 13772        | 3502          | 2928       | 16619        |
| P-Value Lena     |           |             | 0.35         | 0.29      | 0.36           | 0.15        | 034                | 0.28           | 0.60         | 0.39               | 0.13       | 0.02         | 0.3600        | 0.64       | 0 83         |
| Shilka           |           | N obs       | 18           | 18        | 16             | 15          | 13                 | 14             | 15           | 16                 | 17         | 19           | 19            | 20         | 200          |
|                  | La Nina   | Mean        | 12           | ŝ         | ŝ              | 144         | 757                | 767            | 1027         | 894                | 915        | 499          | 101           | 41         | 403          |
|                  |           | sd          | 7.2          | 51        | 6.9            | 115 0       | 390.1              | 341.2          | 453.9        | 461.2              | 418.8      | 305 2        | 45.7          | 21.1       | 477.8        |
| _                |           | N obs       | 56           | 55        | 59             | 60          | 58                 | 60             | 59           | 59                 | 58         | 55           | 55            | 53         | 687          |
|                  | Neutral   | Mean        | 10           | 4         | 4              | 137         | 688                | 720            | 828          | 986                | 915        | 474          | 88            | 37         | 415          |
|                  |           | sd          | 5.4          | 2.7       | 2.4            | 125.8       | 324.0              | 345.5          | 481.6        | 662.3              | 232.2      | 2.002        | 50.2          | 0 CI       | 500.4        |
|                  | 1         | N obs       | 15           | 16<br>7   | 14             | 14          | 81                 | 15             | 15           | 14                 | 14         | 51<br>51     | टा <b>छ</b>   | 16         | 181          |
|                  | EL NINO   | Mean        | 71           | n (       | 4 <sup>c</sup> | 11          | 011<br>216.2       | 600<br>1383    | 286 A        | 481 8              | 510 5      | 0121         | 6.6<br>40.0   | 150        | 1 464 1      |
|                  | 00        | ne -        | ;;;          |           |                | 1.00        | COLC               | C.0.1          | 070          | 0.101              | 017        | 460          | 200           | 00         | 100          |
| P-Value Shilka U | (49=0)    |             | 0.48         | s<br>0.67 | 4 0 38         | 0.19        | <b>007</b><br>0.47 | 0.70           | <b>0.</b> 34 | 0.86               | 66.0       | 0.52         | 0.4500        | 0 65       | 0.76         |
| Kamchatka        |           | N obs       | 10           | =         | 10             | 10          | 6                  | 6              | 6            | 10                 | 10         | II           | =             | 12         | 122          |
|                  | La Nina   | Mean        | 433          | 420       | 412            | 450         | 843                | 1803           | 1759         | 266                | 808        | 695          | 449           | 430        | 762          |
|                  |           | sd          | 40.9         | 334       | 27.2           | 63.4        | 78.1               | 85.0           | 3141         | 108.1              | 88.4       | 78 5         | 25.5          | 47.9       | 477.3        |
|                  |           | N obs       | 36           | 34        | 36             | 36          | 35                 | 37             | 36           | 35                 | 35         | 33           | 34            | 33         | 420          |
| -                | Neutral   | Mean        | 408          | 391       | 392            | 445         | 857                | 1620           | 1656         | 010<br>0 001       | 179        | 696          | 474           | 417        | 770          |
|                  |           | N obc       | 8.CC<br>°    | 0.50      | 43.5<br>o      | 0.00        | 10.2               | 0 787          | 4.50.1       | 188.9              | 0          | 01           | 0.1.9         | 41.1       | 0.2/4<br>106 |
|                  | FI Nino   | Mean        | 440          | 400       | 30F            | 456<br>456  | 0 <b>31</b>        | 1603           | 1879         | 1203               | 941        | 773          | 470           | 445        | 833          |
|                  |           | sđ          | 41.2         | 42.4      | 30.9           | 42.2        | 156.9              | 236.4          | 483.3        | 3101               | 222.9      | 152 7        | 57.0          | 68.2       | 517.1        |
| Mean Kamcha      | ıtka (54) |             | 417          | 400       | 396            | 448         | 869                | 1648           | 1710         | 1045               | 811        | 710          | 468           | 425        | 977          |
| P-Value Kamch    | hatka     |             | 0.17         | 0.19      | 0.40           | 0.88        | 0.33               | 0.15           | 0.35         | 0.04               | 0.01       | 0.21         | 0 5900        | 0.35       | 0.45         |
| Amur(1)          |           | N obs       | 18           | 18        | 16             | 15          | 13                 | 14             | 15           | 16                 | 17         | 19           | 19            | 20         | 200          |
|                  | La Nina   | Mean        | 1122         | 687       | 610            | 3693        | 13008              | 15885          | 16496        | 19725              | 17165      | 11826        | 4124          | 1764       | 8412         |
|                  |           | ps          | 379.9        | 242.0     | 201.1          | 12/1.1      | 3336.2             | 4911.2         | 5160.7       | 5238.0             | 5211.9     | 4103.0       | 5.1061        | 483.9      | 1839.0       |
|                  |           | N obs       | 56           | 8         | 69 g           | 09          | 58<br>0770         | 60             | 95           | 95                 | 8C         | 50<br>13551  | 00            | 50         | 08/          |
|                  | Neutral   | Mean        | 306.0        | 50/C      | 970<br>970     | 0 LLC1      | 22357              | 0.0241         | 10601        | 010/1              | 10144      | 75571        | 1274          | 1/04       | 7572 1       |
|                  |           | N ohs       | 15           | 16        | 14             | 14          | 18                 | 15             | 15           | 14                 | 14         | 15           | 15            | 16         | 181          |
|                  | El Nino   | Mean        | 1220         | 753       | 509            | 3046        | 12536              | 14305          | 13482        | 17980              | 18171      | 11439        | 3847          | 1741       | 8216         |
|                  |           | sd          | 516.2        | 331.3     | 217.2          | 1274 4      | 4059.5             | 4066 9         | 3847.8       | 6938.8             | 5143.5     | 3788.6       | 1433.3        | 415.1      | 74171        |
| Mean Amur(1      | ) (n=89)  |             | 1156         | 716       | 613            | 3290        | 12568              | 14486          | 14307        | 17987              | 17962      | 12086        | 4155          | 1771       | 8425         |
| P-Value Amur(    | ()        |             | 0.78         | 0.77      | 0.98           | 0.34        | 0.88               | 0.46           | 0.12         | 0.40               | 0.84       | 0.72         | 0.6900        | 0.96       | 16.0         |

| Monthly runoff distributions according to SOI classification ( Far East Asia area). |  |
|-------------------------------------------------------------------------------------|--|
| Table 54e:                                                                          |  |

L

| KIVEL           | INC         | Month       | ſ          | H      | M      | v             | MA       | NC               | JL              | AU               | 0               | >              | z             | -              | I OLAI |
|-----------------|-------------|-------------|------------|--------|--------|---------------|----------|------------------|-----------------|------------------|-----------------|----------------|---------------|----------------|--------|
| Amur(2)         |             | N obs       | 11         | 12     | 11     | 1             | 10       | =                | н               |                  | =               | 12             | 12            | 13             | 136    |
|                 | La Nina     | Mean        | 1889       | 1288   | 1086   | 3486          | 13569    | 16772            | 16997           | 20368            | 20361           | 16382          | 6224          | 2281           | 9872   |
| _1              |             | sd          | 469.6      | 362.9  | 367.7  | 1057.9        | 2097.0   | 4108.9           | 4093.4          | 5229.3           | 5618.0          | 6.11.0         | 2410.0        | 69/.3          | 83/0.8 |
|                 |             | N obs       | 38         | 36     | 38     | 38            | 37       | 38               | 37              | 37               | 37              | 34             | 36            | 35             | 441    |
|                 | Neutral     | Mean        | 2001       | 1342   | 1068   | 3109          | 14254    | 15661            | 15341           | 18706            | 20801           | 16741          | 6319          | 2520           | 9795   |
|                 |             | sd          | 679.5      | 533.2  | 497.7  | 1355.8        | 4252 5   | 4198.5           | 4609.1          | 5370.4           | 6353.7          | 5711.8         | 2949.0        | 649.5          | 82657  |
|                 |             | N obs       | 6          | 10     | 6      | 6             | 11       | 6                | 10              | 10               | 10              | 12             | 10            | 10             | 119    |
|                 | El Nino     | Mean        | 2016       | 1299   | 982    | 3434          | 14032    | 16156            | 14747           | 20270            | 21356           | 16403          | 5524          | 2371           | 10169  |
|                 |             | sd          | 632.2      | 412.8  | 399.6  | 1035.6        | 3899.2   | 3950.8           | 4026.2          | 0.6605           | 4823.3          | 63476          | C1677         | 485.2          | 8328.5 |
| Mean Amur(2)    | (n=58)      |             | 1982       | 1324   | 1058   | 3231          | 14094    | 15948            | 15553           | 19291            | 20813           | 16597          | 6162          | 2441           | 9874   |
| P-Value Amur(.  |             |             | 0.86       | 0.93   | 0.86   | 0.60          | 0.89     | 0.73             | 0.46            | 0.54             | 6.0             | 86.0           | 0.7200        | 0.48           | 16.0   |
| Li-Wu           |             | N obs       | 9          | 7      | 7      | 9             | 5        | 7                | 7               | 7                | 7               | 8              | 7             | 7              | 81     |
|                 | La Nina     | Mean        | 1403       | 1622   | 1981   | 2084          | 2516     | 3447             | 2846            | 5186             | 5742            | 9372           | 2733          | 1938           | 3542   |
|                 |             | sd          | 482.6      | 5578   | 559.6  | 916.7         | 1372.1   | 1195.9           | 2369 5          | 4067.3           | 4754.1          | 3573.4         | 899.3         | 583.0          | 3219.3 |
|                 |             | N obs       | 21         | 19     | 19     | 19            | 18       | 18               | 19              | 18               | 18              | 16             | 19            | 19             | 223    |
|                 | Neutral     | Mean        | 1521       | 2038   | 2314   | 2386          | 2608     | 5265             | 3098            | 4087             | 6865            | 3670           | 2766          | 1460           | 3124   |
|                 |             | sd          | 6373       | 1547.4 | 12210  | 1588.9        | 1308.2   | 3693.7           | 2090.6          | 30559            | 5094.1          | 2466.5         | 2951.5        | 705.2          | 2875.1 |
|                 |             | N obs       | 1          | ∞      | ∞      | 6             | 11       | 6                | 8               | 6                | 6               | 10             | 8             | 8              | 104    |
|                 | El Nino     | Mean        | 1480       | 2912   | 2866   | 2183          | 1835     | 3006             | 6358            | 5608             | 6885            | 4182           | 1926          | 1442           | 3419   |
|                 |             | sd          | 383.4      | 3115.0 | 2653 3 | 1331.6        | 498 4    | 953.4            | 4947.3          | 4077.6           | 6131.4          | 3448.1         | 807.2         | 632.9          | 3428.1 |
| Mean Li-Wu (I   | 1=34)       |             | 1491       | 2158   | 2375   | 2279          | 2344     | 4293             | 3813            | 4716             | 6639            | 5162           | 2562          | 1554           | 3282   |
| P-Value L1-Wu   |             |             | 0.91       | 0.40   | 0.55   | 0.88          | 0.20     | 0.12             | 0.04            | 0.54             | 0.88            | 0.00           | 0.6800        | 0.25           | 0.51   |
| Yufeng          |             | N obs       | 4          | 5      | 5      | 9             | 5        | L                | L               | 7                | 1               | L              | 5             | S              | 70     |
| 1               | La Nina     | Mean        | 564        | 566    | 721    | 1037          | 1664     | 2418             | 1312            | 1613             | 3608            | 3258           | 1089          | 773            | 1686   |
|                 |             | ps          | 179 6      | 197 2  | 347.6  | 673.9         | 1053.2   | 1533.7           | 546.6           | 1320.6           | 3082.5          | 1421.3         | 214.0         | 2279           | 1595.9 |
|                 |             | N obs       | 17         | 15     | 16     | 14            | 13       | 13               | 13              | 13               | 13              | 12             | 15            | 15             | 169    |
|                 | Neutral     | Mean        | 609        | 1033   | 1211   | 1169          | 1451     | 2897             | 1676            | 3446             | 3386            | 1815           | 1099          | 589            | 1632   |
|                 |             | sd          | 300.6      | 1183.9 | 829.2  | 720.8         | 7.717    | 1981.4           | 13160           | 2995.0           | 2276.1          | 9603           | 787.2         | 214.1          | 16466  |
|                 |             | N obs       | 5          | 9      | 5      | 9             | 8        | 9                | 9               | 9                | 9               | 7              | 6             | 9              | 73     |
|                 | El Nino     | Mean        | 627        | 1448   | 2174   | 116           | 864      | 1737             | 3153            | 4513             | 3443            | 2436           | 810           | 567            | 1883   |
|                 |             | sd          | 245.4      | 2395.6 | 2933.1 | 666.5         | 325.2    | 538.6            | 1380.5          | 2721.9           | 3051.2          | 2465.5         | 261.3         | 144.0          | 2063.4 |
| Mean Yufeng (   | n=26)       |             | 605        | 1039   | 1302   | 1079          | 1311     | 2500             | 1919            | 3199             | 3459            | 2371           | 1030          | 619            | 1703   |
| P-Value Yufeng  |             |             | 0.94       | 0.61   | 0.26   | 0.74          | 0.10     | 0.37             | 0 02            | 0.14             | 0.98            | 0.19           | 0.6300        | 0.19           | 0.59   |
| Sandimen        |             | N obs       | 4          | S      | S      | 9             | 5        | 7                | 7               | 7                | 7               | 7              | 5             | 5              | 70     |
|                 | La Nina     | Mean        | 96         | 82     | 69     | 117           | 583      | 6525             | 5837            | 9436             | 6878            | 6762           | 589           | 132            | 3663   |
|                 |             | sd          | 243        | 41.2   | 32.4   | 110.9         | 368.3    | 4852.0           | 5451.8          | 4916.0           | 3056.4          | 4237.2         | 272 1         | 21.9           | 4670 0 |
|                 |             | N obs       | 17         | 15     | 16     | 14            | 13       | 13               | 13              | 13               | 13              | 12             | 15            | 15             | 169    |
|                 | Neutral     | Mean        | 501<br>300 | 81     | 122    | 667           | 3550     | 5567<br>7 2022   | 5802            | 8306             | 0849            | 0502           | 208           | 451 1<br>0 1 1 | 2/28   |
| 1               |             | Sd<br>M obc | 628        | 60.U   | 402.4  | 289.4         | 20/8.4   | C.C8/C           | C'7604          | 5 6/00           | 9 1770          | 2/34.4         | 1/404         | 1149           | C.104  |
|                 | F1 Nino     | Mean        | 101        | 811    | C 1    | 28            | ,<br>100 | 13370            | 11673           | 17788            | 5057            | 7807           | 274           | 100            | 4170   |
|                 |             | ps          | 34.4       | 100.9  | 217.4  | 41.8          | 1369.5   | 8919.9           | 4131.2          | 72213            | 5501 1          | 2877.9         | 188.9         | 45.2           | 6304.4 |
| Mean Sandime    | n (n=26)    |             | 101        | 96     | 186    | 207           | 2533     | 8800             | 7167            | 9645             | 6651            | 3545           | 639           | 128            | 3308   |
| P-Value Sandur  | Ien         |             | 0 91       | 0.36   | 0.72   | 0.10          | 0.03     | 0.15             | 0.05            | 0.38             | 0.94            | 0.02           | 0.7600        | 0.86           | 0.12   |
| Xinfadaqiao     |             | N obs       | 4          | 5      | 5      | 9             | s        | 7                | L               | 7                | 7               | 7              | 5             | 5              | 70     |
|                 | La Nina     | Mean        | 1555       | 1482   | 1722   | 2089          | 3459     | 15928            | 10261           | 15356            | 11916           | 8954           | 3120          | 2018           | 7352   |
|                 |             | sd          | 1.99.1     | 425.6  | 8078   | 1282.3        | 21866    | 8993.4           | 7031.3          | 10228 8          | 5703 0          | 3903.1         | 531.2         | 2112           | 7473.3 |
|                 |             | N obs       | 17         | 15     | 16     | 14            | 13       | 13               | 13              | 13               | 13              | 12             | 15            | 15             | 169    |
|                 | Neutral     | Mean        | 1460       | 1377   | 1862   | 2451          | 7507     | 17370            | 11021           | 14879            | 11702           | 4573           | 2520          | 1462           | 6133   |
|                 |             | sd<br>      | 788 6      | 670 1  | 1153.4 | 1654.6        | 3898.9   | 12227.9          | 10181.0         | 11865.8          | 8911.1          | 3277.9         | 16389         | 385.0          | 8169.0 |
|                 | ;           | N obs       | 5          | 9      | 5      | 9             | 8        | 9                | 9               | 9                | 9               |                | 9             | 9              | 51     |
|                 | El Nino     | Mean        | 3661       | 1202   | 3961.0 | 2696<br>25794 | 7082     | 27067<br>17054 6 | 17836<br>5473 1 | 22974<br>11786 1 | 10116<br>5114.8 | 5044<br>2195.6 | 2171<br>446.6 | 316.8          | 867.2  |
| Mean Xinfadar   | riao (n≡26) | 2           | 1451       | 1546   | 2090   | 2424          | 6597     | 19220            | 12389           | 16876            | 11393           | 5879           | 2555          | 1587           | 7001   |
| P-Value Xinfadi | antao       |             | 0.89       | 0.45   | 0.38   | 0.85          | 0.17     | 0.24             | 0.23            | 0.35             | 0.89            | 0 02           | 0.5000        | 0.02           | 0.11   |
|                 | ~mthm       | 1           | 5          |        | 2      | 2010          |          |                  | 2000.0          |                  | 1212            |                |               |                |        |

| (South East Asia area). |
|-------------------------|
| classification          |
| g to SOI                |
| according               |
| distributions           |
| Monthly runoff          |
| Table 55a:              |

| River           | SOI                | Month | ſ                 | F          | M             | V            | MA                     | Νſ         | JĽ     | AU              | S              | 0           | z      | D      | Total  |
|-----------------|--------------------|-------|-------------------|------------|---------------|--------------|------------------------|------------|--------|-----------------|----------------|-------------|--------|--------|--------|
| Pampanga        |                    | N obs | 7                 | 7          | 9             | 9            | 9                      | 7          | 7      | ∞ [             | ∞ :            | 6           | ~ j    | 6      | 88     |
|                 | La Nina            | Mean  | <b>81</b><br>45.9 | 48<br>14.0 | 90<br>10.6    | 9709<br>9079 | <b>45</b><br>27.4      | 150.4      | 232.6  | 176.2           | 268 1          | 292.1       | 134.7  | 167    | 236.0  |
|                 |                    | N ohs | 10                | 18         | 19            | 20           | 18                     | 18         | 17     | 16              | 16             | 15          | 17     | 16     | 209    |
|                 | Neutral            | Mean  | 100               | 2          | 2 2           | 56           | 29                     | 146        | 315    | 542             |                | 390         | 290    | 196    | 219    |
|                 |                    | ps    | 77.0              | 30.4       | 14.0          | 9.6          | 17.4                   | 89.8       | 229.3  | 200.5           | 219.1          | 193.1       | 193.1  | 149.3  | 242.9  |
|                 |                    | N obs | 3                 | 4          | 4             | 3            | 5                      | 4          | 5      | 5               | 5              | 5           | 4      | 4      | 51     |
|                 | El Nino            | Mean  | 62                | 45         | 32            | 20           | 148                    | 129        | 634    | 778             | 536            | 249         | 230    | 86     | 276    |
|                 |                    | sd    | 13.9              | 26.0       | 251           | 15.0         | 230.9                  | 66.7       | 607.3  | 413.3           | 75.4           | 68.0        | 159.4  | 5.0    | 342.4  |
| Mean Pampan     | 3a (n=29)          |       | 92                | 53         | 36            | 31           | 53                     | 139        | 367    | 527             | 581            | 421         | 263    | 178    | 228    |
| P-Value Pampa   | nga                |       | 0.59              | 0.66       | 0.86          | 0.13         | 0.0557                 | 0.91       | 0.14   | 0.0124          | 0.0795         | 0.0354      | 0.63   | 0.39   | 0.37   |
| Bonga           |                    | N obs | 7                 | 8          | 7             | 7            | 7                      | 8          | 8      | 6               | 6              | 10          | 6      | 10     | 66     |
|                 | La Nina            | Mean  | 6                 | 4          | 61            | I            | S                      | 14         | 32     | 56              | 55             | 36          | 14     | 6      | 21     |
|                 |                    | ps    | 5.9               | 3.9        | 1.5           | 0.8          | 62                     | 11.8       | 25.0   | 60.4            | 62.6           | 22.2        | 10.7   | 71     | 33.5   |
|                 |                    | N obs | 19                | 17         | 18            | 19           | 17                     | 17         | 16     | 15              | 15             | 14          | 16     | 15     | 198    |
|                 | Neutral            | Mean  | 4                 | 3          | 3             | 14           | 4                      | 35         | 62     | 80              | 80             | 43          | 23     | 6      | 27     |
|                 |                    | sd    | 2.5               | 14         | 2.0           | 1.8          | 4.9                    | 35.6       | 54.2   | 36.5            | 43.5           | 47.7        | 21.0   | 87     | 39.7   |
|                 |                    | N obs | 3                 | 4          | 4             | 3            | 5                      | 4          | S.     | Ś               | 5              | 5           | 4      | 4      | 51     |
|                 | El Nino            | Mean  | 4                 | ÷          | 4             | 1            | ę                      | 46         | 79     | 48              | 64             | 29          | 13     | 9      | 28     |
|                 |                    | sd    | 1.5               | 0.6        | 0.5           | 0.6          | 54                     | 40.5       | 40.8   | 29.3            | 54.2           | 15.1        | 7.0    | 2.2    | 36.2   |
| Mean Bonga (n   | =29)               |       | s                 | 'n         | 17            | 7            | 4                      | 30         | 57     | 67              | 69             | 38          | 19     | 9      | 25     |
| P-Value Bonga   |                    |       | 0 38              | 0.42       | 054           | 0.39         | 0.69                   | 0.20       | 0.17   | 0.29            | 0.52           | 0.73        | 0.37   | 0.72   | 0.37   |
| Kelantan        |                    | N obs | 8                 | 6          | 8             | 8            | 7                      | 8          | 8      | 6               | 6              | 10          | 6      | 6      | 102    |
|                 | La Nina            | Mean  | 1110              | 540        | 420           | 365          | 468                    | 407        | 367    | 381             | 545            | 614         | 899    | 1605   | 652    |
|                 |                    | sd    | 691.7             | 190.5      | 174.8         | 102.8        | 118.5                  | 57.1       | 38.5   | 40.8            | 124.0          | 245.4       | 328.5  | 1115.7 | 538.5  |
|                 |                    | N obs | 24                | 22         | 23            | 23           | 22                     | 23         | 22     | 21              | 21             | 19          | 21     | 21     | 262    |
|                 | Neutral            | Mean  | 833               | 479        | 371           | 318          | 411                    | 346        | 308    | 317             | 413            | 565         | 814    | 1023   | 514    |
|                 |                    | sd    | 424 6             | 2686       | 258.5         | 144.4        | 176.0                  | 147.8      | 1054   | 123.3           | 76.6           | 129.8       | 374.6  | 496.8  | 347.3  |
|                 |                    | N obs | 5                 | 6          | 9             | 9            | 8                      | 6          | 7      | 7               | 7              | 8           | 7      | 7      | 80     |
|                 | El Nino            | Mean  | 871               | 423        | 338           | 240          | 334                    | 331        | 330    | 344             | 487            | 630         | 829    | 1568   | 562    |
|                 |                    | ps    | 307.9             | 210.6      | 168.5         | 123.4        | 149.1                  | 123.3      | 106.8  | 146.1           | 234.0          | 132.1       | 112.3  | 525.9  | 4219   |
| Mean Kelantar   | 1 (n=37)           |       | 868               | 485        | 376           | 315          | 405                    | 357        | 325    | 338             | 459            | 592         | 837    | 1268   | 555    |
| P-Value Kelant: | u                  |       | 0.38              | 0.65       | 0.79          | 0.24         | 0.28                   | 0 47       | 0.33   | 0.38            | 0.0421         | 0.59        | 0.81   | 0 0634 | 0 0170 |
| Mekong(3)       |                    | N obs | 13                | 14         | 13            | 12           | 10                     | 11         | 11     | 11              | 12             | 13          | 13     | 14     | 147    |
|                 | La Nina            | Mean  | 2441              | 1914       | 1575          | 1600         | 2437                   | 7056       | 13290  | 22018           | 21499          | 11138       | 5808   | 3532   | 7594   |
| 4               |                    | şd    | 363 6             | 268.7      | 242 6         | 296.8        | 732.2                  | 2046.7     | 4687.6 | 4101.0          | 2982.0         | 2769.1      | 864 6  | 559.1  | 7407.4 |
|                 |                    | N obs | 44                | 42         | 43            | 44           | 44                     | 45         | 44     | 44              | 43             | 40          | 42     | 41     | 516    |
|                 | Neutral            | Mean  | 2364              | 1823       | 1542          | 1470         | 2374                   | 7236       | 14171  | 22101           | 21608          | 12966       | 6346   | 3674   | 8144   |
| - 4             |                    | sd    | 360.8             | 274.8      | 220.2         | 230.8        | 696.4                  | 2217.0     | 3590.2 | 3972.6          | 4677.5         | 2740.6      | 1476.6 | 708.1  | 1.6111 |
|                 |                    | N obs | 10                | 11         | 11            | 11           | 13                     | 11         | 12     | 12              | 12             | 14<br>10770 | 12     | 12     | 141    |
|                 | EI NINO            | Mean  | 1147<br>1 80£     | 1897       | 1961<br>274 5 | 1/51         | 1707                   | 3590.8     | 36757  | 19481<br>5110.8 | 3518.9         | 28081       | 7785   | 0.009  | 116/   |
| Mean Mekonol    | ( <u>3) (n=67)</u> | 2     | 2395              | 1854       | 1557          | 1510         | 2315                   | 7116       | 13884  | 21618           | 21027          | 12154       | 6148   | 3611   | 7933   |
| P-Value Mekon   | g(3)               |       | 0.58              | 0.45       | 0.73          | 0.19         | 0.24                   | 0.80       | 0.69   | 0.16            | 0.0787         | 0.0169      | 0 33   | 0.63   | 0.57   |
| Nam Chi         |                    | N obs | 7                 | ∞          | 8             | ∞            | 7                      | 6          | 6      | 6               | 6              | 10          | 6      | 6      | 102    |
|                 | La Nina            | Mean  | 41                | 41         | 43            | 56           | 18                     | 214        | 313    | 383             | 619            | 705         | 346    | 82     | 261    |
| 4               |                    | sd    | 31.9              | 29,4       | 36.1          | 49 1         | 40.9                   | 139.9      | 183.9  | 150.2           | 2867           | 423.1       | 255.9  | 54.6   | 295.0  |
| -               |                    | N obs | 25                | 23         | 23            | 23           | 22                     | 22         | 21     | 21              | 21             | 19          | 21     | 21     | 262    |
| -               | Neutral            | Mean  | 44                | 41         | 42            | 46           | 70                     | 179        | 288    | 444             | 703            | 722         | 414    | 55     | 244    |
|                 |                    | sd    | 30.4              | 30.1       | 37.1          | 48.9         | 55.7                   | 123.7      | 214.6  | 223 0           | 262.5          | 335 3       | 256.1  | 62.2   | 293.7  |
|                 |                    | N obs | ; و               | L.         | -             |              | ۍ ډ                    |            | ×      | ×               | × (            | 6           | ×      | ×ì     | 76     |
|                 | El NIDO            | Mean  | 27.6              | <b>67</b>  | 33.3          | 27.6         | <b>6</b> , 54<br>6, 57 | 141<br>863 | 1 171  | 170.8           | 260.9<br>260.9 | 327.2       | 214.8  | 36.5   | 271.0  |
| Mean Nam Ch     | i (n=38)           |       | 40                | 39         | 43            | 52           | 78                     | 180        | 276    | 392             | 674            | 700         | 372    | 82     | 244    |
| P-Value Nam C   | hi                 |       | 0 47              | 0 61       | 0.00          | 0.47         | 0.43                   | 0.49       | 0.50   | 0.11            | 0.73           | 0.88        | 0.48   | 0.32   | 0.67   |

| River         | SOI        | Month | <br>  | H        | W        | V     | MA         | Νſ     | JI     | AU     | s      | 0      | z                | a        | Total  |
|---------------|------------|-------|-------|----------|----------|-------|------------|--------|--------|--------|--------|--------|------------------|----------|--------|
| Nam mun       |            | N obs | 7     | œ        | 8        | 7     | 9          | ∞      | ∞      | 8      | ×      | 6      | ∞                | 8        | 93     |
|               | La Nina    | Mean  | 79    | 58       | 59       | 76    | 128        | 340    | 645    | 851    | 1389   | 1831   | 994              | 209      | 588    |
|               |            | sd    | 39.4  | 31.2     | 37.3     | 50.0  | 40.8       | 162.9  | 446.0  | 346.9  | 667 2  | 1057.6 | 614.9            | 111.0    | 731.6  |
|               |            | N obs | 23    | 21       | 21       | 22    | 21         | 21     | 20     | 20     | 20     | 18     | 20               | 20       | 247    |
|               | Neutral    | Mean  | 84    | 64       | 60       | 59    | 106        | 335    | 637    | 1172   | 1865   | 2305   | 1226             | 302      | 650    |
|               |            | ps    | 37.7  | 33.2     | 37.4     | 47.0  | 80.0       | 290.0  | 415.8  | 530.8  | 611.9  | 1171.6 | 812.3            | 228.8    | 868.9  |
|               |            | N obs | 9     | 7        | 7        | 7     | 6          | 7      | œ      | ×      | ×      | 6      | 80               | 80       | 92     |
|               | El Nino    | Mean  | 68    | 47       | <b>2</b> | 82    | 146        | 232    | 428    | 163    | 1808   | 2069   | 888              | 159      | 585    |
|               |            | sd    | 28.2  | 24.0     | 40.3     | 27.5  | 121.3      | 157.6  | 335.2  | 329.6  | 798.9  | 836.0  | 481.0            | 56.3     | 795.9  |
| Mean Nam mu   | tn (n=36)  |       | 80    | 60       | 61       | 67    | 120        | 316    | 592    | 958    | 1746   | 2127   | 1099             | 250      | 623    |
| P-Value Nam n | unt        |       | 0.64  | 0.44     | 0.96     | 0 42  | 0.50       | 0.61   | 0.44   | 0 0067 | 0.24   | 0.55   | 0.48             | 0.15     | 0.73   |
| Nan           |            | N obs | 9     | 7        | 7        | 9     | 5          | 7      | 7      | ∞      | ∞      | 6      | ∞                | ∞        | 86     |
|               | La Nina    | Mean  | 44    | 34       | 29       | 33    | <b>6</b> 6 | 150    | 327    | 734    | 582    | 225    | 94               | 50       | 213    |
|               |            | sd    | 14.2  | 16.6     | 12.6     | 21.9  | 17.4       | 51.8   | 1.00.1 | 270.4  | 255.8  | 68.0   | 35.8             | 18.4     | 260.3  |
|               |            | N obs | 21    | 19       | 20       | 21    | 20         | 20     | 19     | 18     | 18     | 16     | 18               | 18       | 228    |
|               | Neutral    | Mean  | 38    | 28       | 26       | 29    | 69         | 121    | 308    | 521    | 628    | 233    | 100              | 52       | 172    |
|               |            | ps    | 13.7  | 11.3     | 10.7     | 14.0  | 42.9       | 58.7   | 210.9  | 159.8  | 335.6  | 104.8  | 36.0             | 15.9     | 230.4  |
|               |            | N obs | 9     | 7        | 9        | 9     | 8          | 9      | 7      | L      | L      | 8      | L                | 7        | 82     |
|               | El Nino    | Mean  | 33    | 26       | 25       | 32    | 48         | 85     | 205    | 450    | 426    | 197    | 95               | 47       | 143    |
|               |            | ps    | 7.1   | 7.4      | 14.2     | 17.1  | 23 9       | 40.1   | 101.6  | 192.2  | 234.8  | 82.2   | 13.0             | 4.0      | 173.9  |
| Mean Nan (n=  | 33)        |       | 38    | 29       | 26       | 30    | 63         | 121    | 290    | 558    | 574    | 222    | 76               | 50       | 175    |
| P-Value Nan   |            |       | 0.37  | 0.40     | 0.71     | 0.83  | 0 39       | 0.12   | 0.36   | 0.0188 | 0.33   | 0.65   | 16.0             | 0.74     | 0.14   |
| Mekong(1)     |            | N obs | 9     | 6        | L .      | 9     | Ś          | L      | L      | L      | L _    | 8      | 7                | 7        | 81     |
| ò             | La Nina    | Mean  | 1130  | 920      | 788      | 931   | 1235       | 2377   | 4993   | 7196   | 5847   | 3475   | 2339             | 1661     | 2829   |
|               |            | sd    | 174.1 | 131.8    | 82.7     | 0.69  | 172 8      | 398.4  | 1623.4 | 2353.6 | 946.6  | 524.4  | 392.9            | 452.9    | 2269.9 |
|               |            | N obs | 20    | 18       | 18       | 18    | 17         | 17     | 17     | 17     | 17     | 15     | 17               | 17       | 208    |
|               | Neutral    | Mean  | 1169  | 936      | 837      | 893   | 1354       | 2663   | 4786   | 6624   | 5643   | 4200   | 2675             | 1607     | 2718   |
|               |            | sd    | 145.4 | 112.0    | 82.8     | 95.8  | 307.4      | 676.9  | 1056.0 | 1624.6 | 1803.3 | 807.4  | 551.2            | 195.8    | 21178  |
| _             |            | N obs | s     | 9        | 9        | 7     | 6          | 7      | 7      | 7      | 2      | 8      | 7                | <u> </u> | 83     |
|               | El Nino    | Mean  | 1213  | 926      | 844      | 925   | 1094       | 2180   | 3971   | 6332   | 4711   | 4023   | 2620             | 1657     | 2596   |
|               |            | sd    | 175.5 | 100.2    | 106.4    | 125.5 | 198.2      | 597.3  | 1180.1 | 1703.1 | 797.0  | 964 3  | 880.5            | 373 2    | 1896.3 |
| Mean Mekong   | (1) (n=31) |       | 1168  | 930      | 827      | 205   | 1260       | 2489   | 4649   | 6687   | 5478   | 3967   | 2586             | 1631     | 2715   |
| P-Value Mekor | 1g(1)      |       | 0.68  | 0.95     | 0.41     | 0.63  | 0 0717     | 0.20   | 0.25   | 0.66   | 0.30   | 0.13   | 0.48             | 0.89     | 0.78   |
| Mekong(2)     |            | sdo N | 9     | <u> </u> | 7        | 9     | 5          | 6      | 9      | 6      | 9      | 7      | -<br>-<br>-<br>- | s.       | 72     |
|               | La Nina    | Mean  | 2282  | 1782     | 1440     | 1444  | 2135       | 6460   | 13021  | 20768  | 22047  | 10879  | 5100             | 3428     | 7613   |
|               |            | ps    | 431.1 | 340.7    | 207.5    | 239.3 | 427.0      | 853.9  | 4209.3 | 4329.0 | 2418.3 | 1922.5 | 556.6            | 794.2    | 7471.4 |
|               |            | sdo N | 18    | 16       | 16       | 16    | 15         | 16     | 16     | 16     | 16     | 14     | 17               | 17       | 193    |
|               | Neutral    | Mean  | 2399  | 1858     | 1551     | 1414  | 2494       | 7047   | 13285  | 18793  | 17470  | 10527  | 5614             | 3364     | 7064   |
|               |            | sd    | 287.5 | 280.6    | 185.6    | 153 3 | 684 5      | 1935.9 | 3814.6 | 3997 7 | 4007.5 | 1228.2 | 1240.4           | 527.9    | 6430.3 |
|               |            | N obs | 5     | 6        | 9        | 7     | 6          | 1      | 7      | 7      | 7      | œ      | 7                | 7        | 83     |
|               | El Nino    | Mean  | 2544  | 1888     | 1604     | 1638  | 1873       | 5845   | 11161  | 18417  | 14865  | 8867   | 5639             | 3345     | 6601   |
|               |            | ps    | 339.8 | 265.7    | 328.0    | 408.9 | 385 9      | 3320.0 | 3656.3 | 3989.8 | 1168.9 | 2172.1 | 1559.9           | 664.4    | 5811.7 |
| Mean Mekong   | (2) (n=29) |       | 2400  | 1846     | 1535     | 1474  | 2240       | 6635   | 12717  | 19111  | 17788  | 10154  | 5531             | 3371     | 7067   |
| P-Value Mekor | 1g(2)      |       | 0.43  | 0.79     | 0 40     | 0 16  | 0.0478     | 0.48   | 0.48   | 0.53   | 0.0002 | 0.0537 | 0.70             | 0.97     | 0.63   |

 Table 55b:
 Monthly runoff distributions according to SOI classification (South East Asia area).

| t area).      |
|---------------|
| continent     |
| Subo          |
| Indian        |
| ssification ( |
| oI cla        |
| 8             |
| according to  |
| distributions |
| runoff        |
| Monthly       |
| Table 56a:    |

| River           | SOI           | Month | J          | F               | М            | A         | MA         | Nľ           | JL           | AU            | s                 | 0          | Z          | ٩          | Total                                 |
|-----------------|---------------|-------|------------|-----------------|--------------|-----------|------------|--------------|--------------|---------------|-------------------|------------|------------|------------|---------------------------------------|
| Mahaweli        |               | N obs | 8          | 6               | 8            | 8         | 7          | 8            | 80           | 6             | 6                 | 10         | 6          | 6          | 102                                   |
|                 | La Nina       | Mean  | 34         | 17              | 16           | 0£        | 62<br>26.0 | 122          | 102<br>167   | 117<br>212    | 112<br>54.0       | 91<br>275  | 16<br>16   | 61<br>2/ 0 | 72                                    |
|                 |               | DS    | 0.01       | 0.0             | 4.2          | 10.7      | 2.00       | oU.4         | 7.0+         | 7.70          | 2.4.2             | C-1C       | 070        | 24.7       | + + + + + + + + + + + + + + + + + + + |
|                 | ;             | N obs | 22         | 50              | 21           | 21        | 50         | 21           | 50<br>100    | 61            | 19                | 195        | 50         | 3 (        | 241                                   |
|                 | Neutral       | Mean  | 8 61       | 1 1 1           | <b>1</b> 1 2 | 66<br>  7 | 05<br>43.4 | 00<br>56 1   | 459          | 37.9          | <b>61</b><br>41.7 | 34.2       | 43.3       | 24.5       | 46.4                                  |
|                 |               | N ohe | 5          | 66              | 41:2<br>6    | 1/1       | 8          | 90.1         | 1            | 1             | 1                 | 1          | 6.5        | 6          | 77                                    |
|                 | El Nino       | Moon  | , <b>6</b> | - 4             | - 1          | - X       | • <b>9</b> | 8            | 90           | . 5           | . 6               | - 61       | > 6        | 8          | 64                                    |
|                 |               | ps    | 11.0       | 7.7             | 10.7         | 14.8      | 53.7       | 64.6         | 40.3         | 19.1          | 17.1              | 34.9       | 26.2       | 84.7       | 48.6                                  |
| Mean Mahawel    | li (n=35)     |       | 31         | 19              | 16           | 31        | 60         | 96           | 100          | 96            | 83                | 98         | 57         | 68         | 99                                    |
| P-Value Mahaw   | eli           | 1     | 0.64       | 0.40            | 0.91         | 0.62      | 0.78       | 0.39         | 0.96         | 0.0182        | 0.0256            | 0.50       | 0.87       | 0.14       | 0.30                                  |
| Gin Ganga       |               | N obs | 12         | 13              | 12           | 11        | 10         | 11           | 11           | 11            | 12                | 13         | 13         | 14         | 143                                   |
| ,               | La Nina       | Mean  | 38         | 23              | 31           | 61        | 86         | 68           | 68           | 52            | 68                | 85         | 95         | 61         | 64                                    |
|                 |               | sd    | 170        | 10.3            | 13.6         | 23.7      | 54.2       | 41.8         | 36.0         | 21.4          | 37.7              | 42.6       | 45.0       | 22.1       | 39.7                                  |
|                 |               | N obs | 41         | 39              | 41           | 42        | 41         | 42           | 41           | 41            | 40                | 37         | 39         | 38         | 482                                   |
|                 | Neutral       | Mean  | 38         | 31              | 37           | 58        | 98         | 78           | 52           | 46            | 54                | 88         | 90         | 62         | 61                                    |
|                 |               | sd    | 16.2       | 15.4            | 17.2         | 19.9      | 47.7       | 35.4         | 25.0         | 29.9          | 32.3              | 37.3       | 25.9       | 22.8       | 35.6                                  |
|                 |               | N obs | 6          | 10              | 6            | 6         | 11         | 6            | 10           | 10            | 10                | 12         | 10         | 10         | 119                                   |
|                 | El Nino       | Mean  | 31         | 30              | 38           | 49        | 104        | 80           | 38           | 46            | 42                | 110        | 104        | 74         | 64                                    |
|                 |               | sd    | 16.3       | 16.2            | 23.3         | 243       | 65.0       | 29.4         | 27.5         | 29.6          | 29.8              | 31.8       | 28.6       | 33.9       | 43.2                                  |
| Mean Gin Gan    | ga (n=62)     |       | 37         | 29              | . 36         | 57        | 66         | 80           | 53           | 47            | 55                | 92         | 93         | 64         | 62                                    |
| P-Value Gin Ga  | nga           |       | 0.53       | 0.25            | 0.61         | 0.41      | 0.92       | 0.70         | 0.0520       | 0.82          | 0.19              | 0.21       | 0.45       | 0.43       | 0.68                                  |
| Karnali         |               | N obs | 9          | 7               | 7            | 9         | 5          | 7            | 7            | 7             | 7                 | 80         | 9          | 9          | 79                                    |
|                 | La Nina       | Mean  | 411        | 364             | 384          | 463       | 629        | 1862         | 3272         | 4558          | 3045              | 1463       | 714        | 504        | 1544                                  |
|                 |               | sd    | 50.4       | 59.3            | 56.2         | 78.3      | 178.7      | 877 2        | 1473.3       | 392.1         | 930.4             | 656.8      | 143.2      | 50.5       | 1504.5                                |
|                 |               | N obs | 19         | 17              | 17           | 17        | 16         | 16           | 17           | 16            | 16                | 14         | 18         | 18         | 201                                   |
|                 | Neutral       | Mean  | 359        | 326             | 359          | 461       | 759        | 1477         | 3318         | 4478          | 2918              | 1278       | 594        | 413        | 1357                                  |
|                 |               | sd    | 43.8       | 51.9            | 787          | 102.7     | 233.4      | 469.5        | 757.7        | 870.4         | 1 789             | 752.2      | 122.7      | 90.7       | 1415.3                                |
| _               |               | N obs | 7          | 8               | 80           | 6         | 11         | 6            | 8            | 6             | 6                 | 10         | œ          | 8          | 104                                   |
|                 | El Nino       | Mean  | 360        | 328             | 326          | 457       | 773        | 1357         | 2858         | 3861          | 2814              | 1025       | 598        | 435        | 1289                                  |
|                 |               | sd    | 41.2       | 37.4            | 60.3         | 121.2     | 190.6      | 366 2        | 583.6        | 8693          | 736.2             | 0.99.0     | 58.0       | 41.7       | 1228.1                                |
| Mean Karnali    | (n=32)        |       | 369        | 335             | 356          | 460       | 748        | 1528         | 3193         | 4322          | 2916              | 1245       | 618        | 436        | 1377                                  |
| P-Value Karnalı | _             |       | 0.05       | 0.25            | 0.29         | 0.99      | 0.59       | 0.19         | 0 5000       | 0.14          | 0.88              | 0.31       | 0.09       | 0.05       | 0.43                                  |
| Kali Gand.(1)   |               | N obs | 3          | 4               | 4            | 5         | 4          | 5            | 5            | 9             | 6                 | 9          | 4          | 4          | 56                                    |
|                 | La Nina       | Mean  | 120        | 112             | 75           | 122       | 149        | 437          | 1257         | 1597          | 1170              | 681        | 272        | 161        | 593                                   |
|                 |               | sd    | 21.2       | 0.0             | 0.0          | 8.5       | 48.2       | 208.1        | 322.6        | 158.3         | 365.3             | 374.1      | 45.9       | 216        | 583 5                                 |
|                 |               | N obs | 15         | 13              | 14           | 12        | 11         | 12           | 12           | 11            | 11                | 11         | 13         | 13         | 148                                   |
|                 | Neutral       | Mean  | 131        | 112             | <u>9</u> 6   | 109       | 148        | 419          | 1269         | 1365          | 1124              | 501        | 242        | 159        | 446                                   |
| - 1             |               | sd    | 21.7       | 29.0            | 39.4         | 21.1      | 443        | 174.8        | 3160         | 354.1         | 260.9             | 232.0      | 71.9       | 37.0       | 518.5                                 |
|                 |               | N obs | 4          | S               | 4            | ŝ         | 7          | S            | S            | S             | 5                 | 2          | 5          | 5          | 8                                     |
|                 | El Nino       | Mean  | 147        | 117             | 16<br>1      | 103       | 137        | 9390         | 1033         | 1458<br>700 ¢ | 1023              | 423        | 253        | 148        | 439                                   |
|                 |               | sd    | 52.5       | C17.            | 55.4         | 0.7       | 21.9       | C.601        | 1.061        | C.665         | 142.0             | 0.05       | +.c/       | +/+        | 4/4.0                                 |
| Mean Kali Gar   | nd.(1) (n=22) |       | 132        | 113             | 87           | H         | 144<br>2   | 403          | 1212         | 1449          | 1113              | 532        | 250        | 156        | 475                                   |
| P-Value Kalı G  | and.(1)       |       | 0.96       | 0.94            | 95.0         | 0.84      | 10.0       | 0.39         | 0.086.0      | 0.38          | 7/0               | 0.28       | c/.n       | C8 N       | 0.14                                  |
| Kali Gand.(2)   |               | N obs | 4          | Š               | Ś            | 9         | ŝ          | 7            | 7            | 1             | L                 |            | 5          | 0          | 9                                     |
|                 | La Nina       | Mean  | •          | •               | 5<br>5       | • ;       | 126        | 311          | 608          | 946           | 674               | 355        | 130<br>5 3 | 8          | 336                                   |
| _ 1             |               | sd    | 0.0        | 00              | 0.0          | 0.0       | 0.0        | 154.3        | 1909         | 114.0         | 143.9             | 1.96.7     | 28.7       | 0.0        | 332.1                                 |
|                 |               | N obs | 61         | 17              | 17           | 15        | 14         | 14           | 15           | 14            | 14                | 13         | 17         | 5          | 186                                   |
|                 | Neutral       | Mean  | 5          | 42              | 44           | 4 °       | 118        | 2/4<br>0 1 0 | 95/.         | 19/           | 195               | C77        | cTT        | 18         | 105 6                                 |
|                 |               | sq    | 001        | 0.0             | ñ            | <u></u>   | 20.7       | 84.9         | 1//.0        | 119.4         | 1.03.1            | 0.20       | 107        | 0.0        | 0.02                                  |
|                 |               | N ODS |            | × ;             | ×            | ъ,        | 11         | ب<br>معد     | ×            | 6             | ۲ ا               | 01         | ×          | ×          | 104                                   |
|                 | El Nino       | Mean  |            | <b>4</b> 6<br>6 | •            | a (       | 11 8       | 1 25         | 070<br>103 4 | 851<br>140.8  | 166               | <b>661</b> | 35         |            | 102<br>1 0 1 0 C                      |
| Maan Kali Can   | (U2-a) (c) pr |       | ŝ          | 35              |              | 2.0       | 114        | 766          | P62          | 11.8          | 586               | 2.00       | 119        | 67         | 256                                   |
| P-Value Kalı Ga | and.(2)       | -     | A N        | 0.58            | N A          | A Z       | 040        | 0.19         | 0.1100       | 0.01          | 0.16              | 0.01       | 0.01       | A.N        | 0.05                                  |
|                 | /-/           |       |            |                 |              |           | ,          |              |              | ,             |                   |            |            |            |                                       |

| -                                                |
|--------------------------------------------------|
| (mai)                                            |
| ě.                                               |
| Ē.                                               |
| 3                                                |
| ÷                                                |
| E.                                               |
| Ċ,                                               |
| E.                                               |
| ·=                                               |
| Ξ                                                |
| 5                                                |
| Ð.                                               |
| ā.                                               |
| Э                                                |
| σō.                                              |
|                                                  |
| 5                                                |
|                                                  |
| Ξ.                                               |
| ×.                                               |
| 5                                                |
| ت:                                               |
| -                                                |
| Ę.                                               |
| 9                                                |
| 17                                               |
| 3                                                |
| <u>_</u>                                         |
| 5                                                |
|                                                  |
| 5                                                |
| ē,                                               |
| ÷.                                               |
| 9                                                |
| Ξ.                                               |
| 0                                                |
| n.                                               |
| ~                                                |
| 8                                                |
| +                                                |
|                                                  |
| - 040                                            |
| - Bu                                             |
| ling                                             |
| ding.                                            |
| ording                                           |
| cording                                          |
| ccording                                         |
| according                                        |
| s according                                      |
| is according                                     |
| ons according                                    |
| ions according                                   |
| tions according                                  |
| utions according                                 |
| butions according                                |
| ributions according                              |
| tributions according                             |
| istributions according                           |
| distributions according                          |
| î distributions according                        |
| ff distributions according                       |
| off distributions according                      |
| noff distributions according                     |
| unoff distributions according                    |
| runoff distributions according                   |
| / runoff distributions according                 |
| ly runoff distributions according                |
| hly runoff distributions according               |
| (thly runoff distributions according             |
| othly runoff distributions according             |
| onthly runoff distributions according            |
| Monthly runoff distributions according           |
| Monthly runoff distributions according           |
| Monthly runoff distributions according           |
| Monthly runoff distributions according           |
| : Monthly runoff distributions according         |
| b: Monthly runoff distributions according        |
| (6b: Monthly runoff distributions according      |
| 56b: Monthly runoff distributions according      |
| e 56b: Monthly runoff distributions according    |
| de 56b: Monthly runoff distributions according   |
| ble 56b: Monthly runoff distributions according  |
| able 56b: Monthly runoff distributions according |

| River          | SOI        | Month | ſ          | H               | М            | A                 | MA          | N                  | JL            | AU            | s             | 0             | z          | <u> </u>       | Total          |
|----------------|------------|-------|------------|-----------------|--------------|-------------------|-------------|--------------------|---------------|---------------|---------------|---------------|------------|----------------|----------------|
| Tamur          | ;          | N obs | ŝ          | 4               | 4            | 4                 | ۰ î         | 4                  | 4             | 5             | 5             | 5             | 4          | 4              | 6 <del>9</del> |
|                | La Nina    | Mean  | <b>0</b> 0 | <b>8</b><br>0 0 | 400          | <b>801</b><br>0.0 | 168<br>49.9 | <b>618</b><br>(9.0 | 949<br>288.2  | 183.7         | 200.0         | 4.30<br>116.9 | 265<br>265 | 60 O           | 361.8          |
|                |            | N ohe | 15         | 13              | 14           | 13                | 12          | 13                 | 13            | 12            | 12            | 11            | 17         | 12             | 152            |
|                | Neutral    | N 005 | 103        | 46              | ± 6          | 103               | 182         | 450                | 956           | 71            | 733           | 336           | 154        | 122            | 337            |
|                |            | şd    | 0.0        | 1.4             | 0.0          | 2.1               | 29.7        | 98.2               | 132.4         | 1484          | 150.3         | 172.1         | 42.1       | 16.2           | 344.3          |
| £              |            | N obs | 4          | 5               | 4            | 5                 |             | 5                  | 5             | 5             | 5             | 9             | 9          | 9              | 63             |
|                | El Nino    | Mean  | <b>6</b> 6 | 0               | 39           | 105               | 180         | 455                | 807           | 817           | 584           | 264           | 143        | •              | 285            |
|                |            | sd    | 0.0        | 0.0             | 0.0          | 3.5               | 54.7        | 140.8              | 96.4          | 212.1         | 117.3         | 715           | 29.5       | 0.0            | 292.3          |
| Mean Tamur ()  | n=22)      |       | 82         | 34              | 42           | 104               | 180         | 482                | 921           | 968           | 704           | 338           | 152        | 86             | 335            |
| P-Value Tamur  |            |       | N.A.       | 0.14            | N.A.         | 0.35              | 0.87        | 0.03               | 0.2300        | 0.44          | 0.17          | 0 18          | 0.80       | 0.53           | 0.11           |
| Ganges (1)     |            | N obs | 11         | 12              | 11           | 11                | 10          | 11                 | 11            | 11            | 11            | 12            | 12         | 13             | 136            |
| )              | La Nina    | Mean  | 3044       | 2556            | 2111         | 1840              | 2016        | 5516               | 22858         | 44633         | 39213         | 19698         | 8156       | 4484           | 12902          |
|                |            | sd    | 978.6      | 816.6           | 869.6        | 646.1             | 657.2       | 2363.5             | 4834.3        | 5757 1        | 5250.8        | 7741.5        | 3939 7     | 1477 5         | 14847 2        |
|                |            | N obs | 36         | 34              | 36           | 36                | 35          | 36                 | 35            | 35            | 35            | 32            | 34         | 33             | 417            |
|                | Neutral    | Mean  | 2697       | 2315            | 2040         | 1860              | 2026        | 3947               | 18075         | 37868         | 36525         | 18271         | 6518       | 3645           | 11252          |
|                | -          | sd    | 863.6      | 8538            | 649.4        | 527.3             | 534.4       | 1401.8             | 4385.1        | 7342.0        | 8950.6        | 7383.6        | 1999.4     | 992.2          | 13608.4        |
|                |            | N obs | 6          | 10              | 6            | 6                 | 11          | 6                  | 10            | 10            | 10            | 12            | 10         | 10             | 119            |
|                | El Nino    | Mean  | 2558       | 2141            | 1627         | 1396              | 1759        | 3360               | 14661         | 34394         | 34791         | 13149         | 5616       | 3593           | 10164          |
|                |            | Sd    | 044.0      | 0.4.0           | 8.00C        | 380.2             | 400.9       | 980.4              | 4.582.5       | 18168         | 10140.0       | 3422.3        | 900.9      | 11711          | 1 0+071        |
| Mean Ganges (  | (1) (n=56) |       | 2743       | 2335            | 1988<br>3.63 | 1782              | 1972        | 4161               | 18405         | 38576         | 36743<br>0 50 | 17479         | 6708       | 3830           | 11394          |
| P-Value Gange  | <u>()</u>  |       | 0.40       | 0.47            | 0.23         | 0.07              | 0.34        | 0.UI               | 0,000         | <u>0.01</u>   | 7C'N          | c0:0          | cn:n       | 0.00           | +c.0           |
| Ganges (2)     |            | N obs | ×          | 6               | 80           | ×                 | L           | ×                  | ×             | 6             | 6             | 10            | 6          | 10             | 103            |
|                | La Nina    | Mean  | 2976       | 2422            | 2031         | 1787              | 2175        | 6172               | 26268         | 47859         | 44372         | 21758         | 8298       | 4686           | 14784          |
| 1              |            | sd    | 428.2      | 5514            | 542.5        | 215.8             | 392.9       | 3152.7             | 8113.8        | 10537.7       | 7099.7        | 6714.1        | 2373.3     | 7806           | 17082.6        |
|                |            | N obs | 24         | 22              | 23           | 23                | 22          | 23                 | 22            | 21            | 21            | 20            | 22         | 21             | 264            |
|                | Neutral    | Mean  | 2756       | 2390            | 2043         | 1846              | 2127        | 4574               | 20592         | 42760         | 39154         | 19479         | 6637       | 3874           | 11933          |
|                |            | sd    | 472.6      | 496.4           | 405.1        | 369.0             | 479.6       | 1801.9             | 5090.7        | 9424.6        | 10342.7       | 9182.9        | 2280.1     | 546.6          | 14918.3        |
|                |            | N obs | 5          | 9               | 9            | 9                 | ×           | 9                  | 7             | 7             | ٢             | 7             | 9          | 9              | 11             |
|                | El Nino    | Mean  | 2527       | 2143            | 1662         | 1587              | 1957        | 4074               | 17516         | 38507         | 35768         | 13518         | 5756       | 3661           | 11412          |
|                | -          | sd    | 2897       | 2801            | 222.0        | 416.5             | 466.7       | 1124.5             | 5271.5        | 11236.5       | 8173.2        | 4300.3        | 1032.6     | 399 5          | 13900.7        |
| Mean Ganges (  | 2) (n=37)  |       | 2772       | 2358            | 1979         | 1791              | 2099        | 4839               | 21237         | 43196         | 39783         | 18967         | 6971       | 4059           | 12504          |
| P-Value Ganger | \$ (2)     |       | 0 22       | 0.50            | 0.14         | 0.29              | 0.61        | 0.12               | 0.0188        | 0.19          | 0 18          | 0.11          | 0.03       | 000            | 0.22           |
| Sapt Kosi      |            | N obs | 8          | 6               | 8            | 80                | 7           | 8                  | 80            | 6             | 6             | 10            | 6          | 10             | 103            |
|                | La Nina    | Mean  | 403        | 349             | 342          | 389               | 668         | 2123               | 4006          | 4987          | 3599          | 1721          | 800        | 528            | 1678           |
|                |            | sd    | 35.7       | 42.1            | 50.0         | 368               | 175.0       | 785.7              | 989.4         | 1280.5        | 761 1         | 423.8         | 106.2      | 43.9           | 1690.3         |
|                |            | N obs | 20         | 18              | 19           | 20                | 19          | 19                 | 18            | 17            | 17            | 16            | 18         | 17             | 218            |
|                | Neutral    | Mean  | 403        | 376             | 375          | 430               | 726         | 2013               | 4210          | 4774          | 3445          | 1902          | 906        | 540            | 1623           |
|                |            | sd    | 40.1       | 693             | 98.0         | 512               | 131.3       | 632.7              | 1143.2        | 889.6         | 5/11          | 514.8         | 217.7      | 54.0           | 1611.0         |
|                |            | N obs | 4 202      | n į             | 0 g          | 4                 | 0           | 0 ,                | 0             | 0             | 0             | 0             | 0.19       | 0              | 50             |
|                |            | Mean  | 202        | 0 20            | 040<br>20.2  | 014               | 141         | 7001               | 2005<br>0 053 | 4412          | C167          | 204 8         | 010        | 0.05           | 1400 8         |
| Never Section  |            | R     | 100        | 0.00            | 25.0         | 0.00              | 7/11        | 1076               | 4050          | 0.040         | 0.170         | 01710         | 050        | 520            | 1676           |
| P-Value Sant K | (7C=II) 19 |       | 0.69       | 148             | 705          | 017               | 0.58        | 0.34               | 0.5300        | 1127          | 010           | 50.0          | 0.33       | 0.37           | 0.90           |
| Codeword       |            | Naho  | 10         | 10              | 16           | 15                | 13          |                    | 15            | 16            | 17            | 01            | 10         | 00             | 200            |
|                | I a Ning   | Mean  | 780        | 170<br>170      | 173          | 138               | A F         | 1172               | 7607          | 10390         | 10587         | 5781          | 1608       | 455            | 1013           |
|                |            | sd    | 60.0       | (47<br>(8)      | 5.63         | 1 69              | 65 7        | 1019 3             | 41851         | 4078.8        | 4673-1        | 3476.0        | 11/11      | 178.5          | 4659.4         |
|                |            | N obs | 47         | 46              | 50           | 52                | 20          | 51                 | 49            | 49            | 48            | 45            | 45         | 43             | 575            |
|                | Neutral    | Mean  | 255        | 202             | 153          | 121               | 89          | 962                | 7945          | 11698         | 10317         | 3629          | 1024       | <del>4</del> 4 | 3087           |
|                |            | sd    | 94.4       | 85.2            | 82.3         | 104.8             | 72.5        | 15213              | 4949.5        | 4746.8        | 4858 3        | 2687.2        | 7347       | 284.2          | 4917.0         |
|                |            | N obs | 13         | 14              | 12           | 11                | 15          | 13                 | 14            | 13            | 13            | 14            | 14         | 15             | 161            |
|                | El Nino    | Mean  | 213        | 178             | 139          | 106               | 96          | 668                | 6616          | 12278         | 9203          | 2684          | 632        | 346            | 2762           |
|                |            | sd    | 89.9       | 71.9            | 46.8         | 44.1              | 69 1        | 1222.8             | 35277         | 7015.5        | 4616.3        | 1649.3        | 288.6      | 211.6          | 4773.0         |
| Mean Godava    | ri (n=78)  |       | 256<br>256 | 204             | 155<br>2.5   | 122               | 87          | 989<br>200         | 7658          | 11526<br>2.00 | 10190         | 3984<br>2.01  | 1096       | 428            | 3058           |
| P-Value Godav. | ari        |       | 0.08       | 0.22            | 25.0         | 0 / 0             | U 84        | 0.87               | 0.6400        | 0.00          | 0./1          | 10.0          | 0.00       | 1.38           | 0.00           |

| River          | SOI       | Month | _     | 6    | M     | V    | MA    | N     | J.     | AU     | s      | 0      | z      | a     | Total  |
|----------------|-----------|-------|-------|------|-------|------|-------|-------|--------|--------|--------|--------|--------|-------|--------|
| Krishna        |           | N obs | 18    | 18   | 16    | 15   | 13    | 14    | 15     | 16     | 17     | 19     | 19     | 20    | 200    |
|                | La Nina   | Mean  | 146   | 86   | 84    | 41   | 46    | 717   | 4825   | 6374   | 5005   | 3934   | 1513   | 287   | 1927   |
|                |           | ps    | 128.6 | 936  | 175.7 | 46.0 | 76.6  | 662 9 | 2834.1 | 3846.3 | 1750.0 | 1769.1 | 2351.4 | 320.2 | 2826.6 |
|                |           | N obs | 48    | 47   | 51    | 53   | 51    | 52    | 50     | 50     | 49     | 46     | 46     | 44    | 587    |
|                | Neutral   | Mean  | 110   | 63   | 44    | 37   | 118   | 476   | 4754   | 6343   | 4028   | 2349   | 871    | 243   | 1626   |
|                |           | ps    | 116.5 | 53.8 | 52.0  | 48 6 | 200.7 | 369.0 | 2500 8 | 2139 5 | 1879.3 | 1115.6 | 717.9  | 226.1 | 2431.0 |
|                |           | N obs | 13    | 14   | 12    | 11   | 15    | 13    | 14     | 13     | 13     | 14     | 14     | 15    | 161    |
|                | El Nino   | Mean  | 70    | 41   | 29    | 11   | 169   | 363   | 442    | 5873   | 3197   | 1849   | 522    | 163   | 1397   |
|                |           | sđ    | 70.4  | 43.7 | 44.1  | 7.5  | 311.6 | 440.7 | 2429.0 | 3034.2 | 1490.5 | 1317.9 | 466.8  | 115.8 | 2292.4 |
| Mean Krishn    | a (n=79)  |       | 112   | 64   | 50    | 34   | 116   | 500   | 4712   | 6272   | 4101   | 2642   | 964    | 239   | 1650   |
| P-Value Krishi | na .      |       | 0.20  | 0.16 | 0.22  | 0 18 | 0.36  | 0.12  | 0.9100 | 0.84   | 0.03   | 0.00   | 0.08   | 0.32  | 0.12   |
| Narmada        |           | N obs | L     | 7    | 9     | 9    | 9     | 7     | 7      | 8      | œ      | 6      | 8      | 6     | 88     |
|                | La Nina   | Mean  | 22    | 13   | 11    | S    | 7     | 114   | 993    | 1634   | 786    | 248    | 75     | 44    | 367    |
|                |           | sd    | 6.8   | 6.9  | 7.0   | 3.7  | 1.9   | 174.8 | 563.4  | 490 3  | 680.7  | 173.1  | 33.0   | 33.6  | 608.3  |
|                |           | N obs | 16    | 15   | 16    | 17   | 15    | 15    | 14     | 13     | 13     | 12     | 14     | 13    | 173    |
|                | Neutral   | Mean  | 22    | 14   | 6     | 9    | 1     | 41    | 751    | 1300   | 841    | 204    | 41     | 52    | 249    |
|                |           | sd    | 18.2  | 8.0  | 6.3   | 5.4  | 1.1   | 38.6  | 606.1  | 496.7  | 513.0  | 140.2  | 20.1   | 12.5  | 482.6  |
|                |           | N obs | 3     | 4    | 4     | 3    | 5     | 4     | 5      | 5      | - 5    | 5      | 4      | 4     | 51     |
|                | El Nino   | Mean  | 11    | 14   | v.    | 1    | 1     | 13    | 412    | 1272   | 1956   | 68     | 31     | 18    | 373    |
| <u></u>        |           | ps    | 4.6   | 17.8 | 3.7   | 0.6  | 0.5   | 22.2  | 289.2  | 662.3  | 3213.9 | 28.2   | 11.7   | 9.4   | 1146.0 |
| Mean Narmae    | da (n=26) |       | 20    | 14   | 6     | S    | 7     | 56    | 751    | 1398   | 1100   | 197    | 50     | 29    | 303    |
| P-Value Narm   | ada       |       | 0.50  | 0.95 | 0.27  | 0.26 | 0.39  | 0.17  | 0.2700 | 0.33   | 034    | 0.15   | 0.00   | 0.06  | 0.29   |

| Indian Subcontinent area).                                   |   |
|--------------------------------------------------------------|---|
| Monthly runoff distributions according to SOI classification | D |
| Table 56c:                                                   |   |

| Central Asia area). |
|---------------------|
| I classification (  |
| ccording to SO      |
| i distributions a   |
| Monthly runoff      |
| Table 57a:          |

| River          | SOI         | Month | ſ          | F                 | W                 | A      | MA            | Zſ     | JL            | AU           | s            | 0                   | z            | -<br>-     | Total         |
|----------------|-------------|-------|------------|-------------------|-------------------|--------|---------------|--------|---------------|--------------|--------------|---------------------|--------------|------------|---------------|
| Amu-Darya      |             | N obs | 8          | 8                 | 7                 | 7      | 7             | 7      | 7             | 8            | ×            | 6                   | 10           | П          | 97            |
|                | La Nina     | Mean  | 493        | 441               | 471               | 628    | 1524          | 2433   | 2700          | 2341         | 1676         | 918                 | 664          | 583        | 1188          |
|                | -           | sd    | 68.8       | 1868              | 374 6             | 331.3  | 731.1         | 722 1  | 852.5         | 756.5        | 305.1        | 129.8               | 114.7        | 219.4      | 910.7         |
| _              |             | N obs | 29         | 28                | 30                | 31     | 29            | 30     | 29            | 28           | 28           | 26                  | 26           | 25         | 339           |
| _              | Neutral     | Mean  | 597        | 586               | 455               | 801    | 1703          | 2502   | 3243          | 2828         | 1722         | 1073                | 858          | 169        | 1432          |
|                |             | sd    | 207.6      | 208.8             | 260.4             | 470.3  | 610.9         | 693.7  | 1053.0        | 738.6        | 367.3        | 157.2               | 124.5        | 153 5      | 1062.9        |
|                |             | N obs | 9          | 7                 | 9                 | 5      | L             | 9      | ۲ -           | 2            | 7            | 00                  | 7            | 7          | 80            |
|                | El Nino     | Mean  | 495        | 367               | 503               | 1028   | 1820          | 2883   | 3181          | 2291         | 1397         | 965                 | 785          | 615        | 1367          |
|                |             | sd    | 1042       | 1560              | 307.2             | 704.1  | 763.9         | 1311 1 | 1327 1        | 1213.8       | 533.7        | 239.3               | 236.2        | 159.2      | 1154.3        |
| Mean Amu-D     | urya (n=43) |       | 564        | 523               | 464               | 799    | 1693          | 2544   | 3145<br>î :î  | 2650<br>0.5  | 1661         | 1020                | 801          | 651<br>651 | 1376          |
| P-Value Amu-l  | Darya       |       | 0.22       | 0 0207            | 0.93              | 0.37   | 0.70          | 0.53   | 049           | 0.17         | 61.0         | 0.0458              | 0.0036       | 0.20       | 0.13          |
| Zaravchan      |             | N obs | 11         | 12                | 11                | 11     | 10            | 11     | 11            | 11           | 11           | 12                  | 12           | 13         | 136           |
|                | La Nina     | Mean  | 40         | 37                | 35                | 49     | 141           | 355    | 451           | 372          | 187          | 82                  | 57           | 46         | 151           |
| _              |             | ps    | 6.1        | 5.2               | 37                | 12.3   | 56.3          | 94.5   | 107.3         | 661          | 43.8         | 12.4                | 7.2          | 6.7        | 153.0         |
|                |             | N obs | 41         | 38                | 39                | 39     | 38            | 39     | 39            | 38           | 38           | 35                  | 38           | 37         | 459           |
|                | Neutral     | Mean  | 40         | 35                | 35                | 53     | 143           | 342    | 472           | 355          | 186          | 87                  | 60           | 47         | 155           |
|                |             | ps    | 5.9        | 37                | 41                | 15.8   | 47.2          | 74.3   | 79.9          | 45.1         | 31.4         | 10.5                | 7.5          | 7.2        | 151.6         |
|                |             | N obs | 11         | 13                | 13                | 13     | 15            | 13     | 13            | 14           | 14           | 16                  | 13           | 13         | 161           |
|                | El Nino     | Mean  | 39         | 39                | 41                | 58     | 154           | 380    | 430           | 340          | 186          | 89                  | 62           | 49         | 157           |
|                |             | sd    | 4.4        | 8.3               | 9.5               | 14.3   | 48.4          | 87.4   | 91.0          | 42.8         | 363          | 14.7                | 12.6         | 11.3       | 144.8         |
| Mean Zaravch   | ıan (n=63)  |       | 40         | 36                | 36                | 54     | 146           | 352    | 460           | 355          | 186          | 87                  | 60           | 47         | 155           |
| P-Value Zaravo | chan        |       | 0.75       | 0.11              | 0.0033            | 0.36   | 0.77          | 0.34   | 0.30          | 0.28         | 0.99         | 0.26                | 038          | 0 46       | 0.94          |
| Gunt           |             | N obs | 6          | 10                | 6                 | 8      |               | 8      | 8             | 6            | 6            | 10                  | 10           | 11         | 108           |
|                | La Nina     | Mean  | 30         | 27                | 26                | 27     | 60            | 241    | 316           | 251          | 120          | 60                  | 44           | 35         | 98            |
|                |             | sd    | 37         | 33                | 2.3               | 2.5    | 39.9          | 94.4   | 77.4          | 53.9         | 23.6         | 7.2                 | 5.1          | 3.6        | 104.9         |
|                |             | N obs | 29         | 27                | 29                | 30     | 29            | 30     | 29            | 28           | 28           | 27                  | 28           | 27         | 341           |
|                | Neutral     | Mean  | 29         | 27                | 26                | 30     | 62            | 234    | 340           | 254          | 126          | 64                  | 44           | 35         | 107           |
|                |             | sd    | 2.7        | 2.1               | 1.9               | 4.I    | 278           | 85.7   | 100.3         | 41.4         | 242          | 87                  | 48           | 3.8        | 112.9         |
|                |             | N obs | ~          | 6                 | ~                 | ×      | 10            | 8      | 6             | 6            | 6            | 6                   | 8            | 8          | 103           |
|                | El Nino     | Mean  | 28         | 25                | 25                | 28     | 65            | 249    | 294           | 224          | 105          | 58                  | 40           | 32         | 66            |
|                |             | ps    | 2.3        | 1.7               | 0.7               | 2.5    | 28.1          | 75.9   | 98 5          | 54.3         | 20.8         | 9.8                 | 4.2          | 3.7        | 102.9         |
| Mean Gunt (n   | =46)        |       | 29         | 27                | 26                | 29     | 62            | 238    | 327           | 248          | 121          | 62                  | 43           | 35         | 104           |
| P-Value Gunt   |             |       | 0.23       | 0.15              | 0 0952            | 0.0990 | 0.95          | 0.00   | 0.43          | 0.24         | 0.0692       | 0.0937              | 0.0929       | 0.0850     | 0.68          |
| Vakhsh         |             | N obs | 7          | 7                 | 9                 | 9      | 9             | 5      | 5             | 5            | 5            | 6                   | 7            | 8          | 73            |
|                | La Nina     | Mean  | 190        | 181               | 229               | 428    | 872           | 1145   | 1542          | 1410         | 682          | 315                 | 249          | 220        | 562           |
| _              |             | ps    | 30.1       | 19.3              | 32.3              | 114.7  | 170.6         | 152.1  | 434.6         | 1554         | 84.5         | 289                 | 43.3         | 41.2       | 4818          |
|                |             | N obs | 23         | 23                | 24                | 25     | 24            | 26     | 25            | 25           | 25           | 23                  | 23           | 22         | 288           |
| _              | Neutral     | Mean  | 180        | 177               | 225               | 476    | 829           | 1222   | 1688<br>271 J | 14.37        | 759          | <b>354</b>          | 707          | 207        | 6/0           |
|                |             | N obe | 19.1       | 5                 | 1./0              | 0.101  | 5             | 7 747  | 5             | 102.4        | 5            | 6.66                | 1.00         | 107        | 1.000         |
|                | El Nino     | Mean  | 178        | 181               | 238               | 429    | 894           | 1345   | 1492          | 1153         | و11<br>دار   | 329                 | 238          | 197        | 593           |
|                |             | sd    | 18.2       | 10.0              | 37.3              | 6.101  | 2189          | 271.4  | 358.5         | 248.5        | 134 6        | 50.6                | 23.2         | 25.5       | 489.7         |
| Mean Vakhsh    | (n=35)      |       | 182        | 178               | 227               | 463    | 846           | 1225   | 1639          | 1393         | 727          | 343                 | 252          | 209        | 640           |
| P-Value Vakhs  | ц.          |       | 0 53       | 0.77              | 0 75              | 0.67   | 0.70          | 0 45   | 0.34          | 0.0107       | 0.0259       | 0.21                | 0.49         | 0.39       | 0.22          |
| Biya           |             | N obs | 18         | 18                | 16                | 15     | 13            | 14     | 15            | 16           | 17           | 19                  | 19           | 20         | 200           |
|                | La Nina     | Mean  | 69         | 56                | 58                | 635    | 1273          | 1205   | 742           | 440          | 394          | 334                 | 183          | 87         | 413           |
|                |             | sd    | 15.0       | 13.8              | 189               | 295.3  | 377.8         | 355.2  | 274.0         | 129.7        | 1679         | 140 2               | 63.0         | 24.7       | 432.5         |
|                |             | N obs | 58         | 57                | 60                | 19     | 59            | 61     | 60            | 60           | 59           | 56                  | 56           | 54         | 701           |
|                | Neutral     | Mean  | 10         | 20                | 58                | 677    | 1179<br>220.0 | 1221   | 803<br>208 2  | <b>591</b>   | 437          | 357                 | 077          | 101        | 490           |
|                |             | ps .  | 7.01       | 17.1              | 671               | 215.4  | 0.6/5         | 428.1  | 528.5         | 5.09         | C.801        | 128.0               | 88./         | 0.05       | 104 /         |
|                |             | N obs | <u>5</u> [ | 16<br>2           | 3 8               | c (    | 61            | 10     | 16            | с ;          | a <b>i</b>   | 10                  | 10           | 1          | 191           |
|                | El Nino     | Mean  | 27         | <b>38</b><br>13.5 | <b>58</b><br>15.2 | 325.1  | 1319<br>532.2 | 425.0  | 233.2         | 546<br>166.8 | 48/<br>156.9 | <b>595</b><br>124.3 | 248<br>107.0 | 29.4       | cinc<br>611.3 |
| Mean Biya (n₌  |             |       | 70         | 57                | 58                | 671    | 1222          | 1215   | 778           | 557          | 437          | 359                 | 217          | 86         | 478           |
| P-Value Baya   |             |       | 0.92       | 0.94              | 0.99              | 0.86   | 0.40          | 0.98   | 0.57          | 0.0404       | 0.29         | 039                 | 0.0933       | 0 13       | 0.0811        |
|                |             |       |            |                   |                   |        |               |        |               |              |              |                     |              |            |               |
| ( Central Asia area). |
|-----------------------|
| SOI classification    |
| s according to S      |
| inoff distribution    |
| Monthly ru            |
| Table 57b:            |

| River                         | SOI     | Month  | ſ             | F             | W              | V              | MA          | Z,                    | JF          | AU            | s                | 0           | z            | a      | Total       |
|-------------------------------|---------|--------|---------------|---------------|----------------|----------------|-------------|-----------------------|-------------|---------------|------------------|-------------|--------------|--------|-------------|
| op                            |         | N obs  | 11            | 12            | 11             | =              | 10          | 11                    | 11          | 11            | []               | 12          | 12           | 13     | 136         |
|                               | La Nina | sd     | 0505<br>768.0 | 4044<br>644.6 | 488.6          | 5202<br>441.2  | 3502.0      | 3681.5                | 5648 6      | 8934.7        | 5153 6           | 3324.4      | 1506.5       | 9966   | 10797.3     |
|                               |         | N obs  | 43            | 40            | 41             | 41             | 40          | 41                    | 41          | 40            | 40               | 37          | 40           | 39     | 483         |
|                               | Neutral | Mean   | 4600          | 3837          | 3379           | 3426           | 14447       | 32999                 | 29936       | 22178         | 13800            | 01100       | 5993         | 5084   | 12509       |
|                               |         | ps N   | 963.1         | 669.1         | 591.4          | /80.8          | 4853.7      | 3081.7                | 4855.7      | 8393.5        | 1.0020           | 1884.2      | 1852.0       | 171.0  | 10845.2     |
|                               | El Nino | Noor   | 11            | 12            | 1531           | 2810           | 14010       | 1001                  | 20404       | 20679         | 12801            | 10069       | ст<br>С      | 5588   | 101         |
|                               |         | sd     | 1081.0        | 995 4         | 0.986          | 1059.1         | 5569.2      | 3332.2                | 6786.4      | 10081 1       | 6659.8           | 2682.8      | 1.7001       | 1104.2 | 10541 3     |
| Mean Ob (n≓t                  | (5)     |        | 4693          | 3881          | 3414           | 3476           | 14598       | 32851                 | 29825       | 22101         | 13786            | 10253       | 6175         | 5332   | 12532       |
| P-Value Ob                    |         |        | 0 37          | 0.70          | 0.78           | 0.20           | 0.95        | 0.55                  | 0.95        | 0.69          | 0.63             | 0.72        | 0.54         | 0.10   | 0 97        |
| Tom (1)                       |         | N obs  | 19            | 19            | 17             | 15             | 13          | 14                    | 15          | 16            | 11               | 19          | 19           | 20     | 203         |
|                               | La Nina | Mean   | 89            | 73            | 80             | 1077           | 3078        | 1298                  | 467         | 313           | 395              | 487         | 204          | 128    | 557         |
|                               |         | ps     | 284           | 18.7          | 23.7           | 581.4          | 714.2       | 418.6                 | 252.9       | 1791          | 2553             | 303.8       | 108.2        | 45.9   | 808.4       |
|                               | Norteo  | N obs  | 80<br>80      | 10            | 60<br>76       | 62<br>1140     | 00          | 1350                  | 01<br>570   | 161           | 00<br><b>7</b> 2 | 10          | 10           | 021    | 100         |
|                               | Is unat | sd     | <b>29.9</b>   | 22.2          | 28.2           | 585.4          | 725.6       | 655.1                 | 290.4       | 7.72          | 259.4            | 245.9       | 146.3        | 56.5   | 856.2       |
|                               |         | N obs  | 15            | 16            | 15             | 15             | 19          | 16                    | 16          | 15            | 15               | 16          | 16           | 17     | 191         |
|                               | El Nino | Mean   | 89            | 11            | 80             | 1083           | 3098        | 1418                  | 470         | 339           | 451              | 545         | 252          | 133    | 711         |
|                               |         | sd     | 25.3          | 22.5          | 30.3           | 645.1          | 990.8       | 730.5                 | 2747        | 136.2         | 195.1            | 217.8       | 1207         | 33.6   | 985 8       |
| Mean Tom (1)<br>P-Value Tom ( | (n=92)  |        | 87<br>0.94    | 73<br>0 88    | 78<br>0 94     | 1120           | 2929<br>036 | 1360<br>0.88          | 509<br>0.67 | 363<br>0 37   | 432<br>0 78      | 490<br>0.63 | 239<br>0 44  | 130    | 651<br>0 19 |
| Tom (2)                       |         | N obs  | 4             | 5             | 5              | 5              | 4           | 6                     | 6           | 6             | 6                | 6           | 5            | 5      | 63          |
|                               | La Nina | Mean   | 169           | 122           | 122            | 2075           | 4074        | 2605                  | 679         | 629           | 484              | 753         | 344          | 210    | 988         |
|                               |         | sd     | 29.3          | 35.0          | 42.9           | 508.5          | 685 8       | 11969                 | 213.3       | 427.5         | 1584             | 312.2       | 102.1        | 28.0   | 1202.1      |
|                               |         | N obs  | 17            | 15            | 16             | 15             | 14          | 14                    | 14          | 14            | 14               | 13          | 15           | 15     | 176         |
|                               | Neutral | Mean   | 176           | 135           | 145            | 1961           | 4400        | 2154                  | 734         | 625           | 537              | 721         | 455          | 233    | 993         |
|                               |         | sd     | 37.7          | 30.6          | 52.7           | 763.3          | 11044       | 1102.1                | 329.3       | 211.9         | 2360             | 345.6       | 250.4        | 45.6   | 1296.1      |
|                               |         | N obs  | ž,            | 9             | γ              | 9              | ∞ 20        | 907                   | 9 9         | 9             | 9                | 7           | 9            | 9      | 73          |
|                               | EI NIIO | Mean   | F07           | 20 0<br>20 0  | 142            | 6 7 1 0        | 1970        | 2047                  | 210<br>210  | 404<br>1 88 / | 751              | 252.2       | 540<br>170.8 | 200    | 1660 8      |
| Mean Tom (2)                  | (h-36)  |        | 180           | 135           | 140            | 1908           | 4623        | 2233                  | 1001        | 583           | 574              | 803         | 455          | 2.37   | 1047        |
| P-Value Tom (                 | 2)      |        | 0 23          | 0.54          | 0 68           | 0.59           | 0.16        | 0.67                  | 0.75        | 0.35          | 0.10             | 0.22        | 0.32         | 0.13   | 0.44        |
| Tura                          |         | N obs  | 18            | 18            | 16             | 15             | 13          | 14                    | 15          | 16            | 17               | 19          | 19           | 20     | 200         |
|                               | La Nina | Mean   | 30            | 29            | 30             | 243            | 652         | 316                   | 180         | 158           | 153              | 114         | 91           | 46     | 154         |
|                               |         | sd<br> | 11.3          | 9.2           | 82             | 125.2          | 3261        | 206.9                 | 166.8       | 193.9         | 1.0.1            | 144.2       | 63.0         | 72.7   | 210.0       |
|                               | Norten  | N ODS  | 10            | 00<br>00      | 6C 02          | 00             | 80<br>900   | 00                    | 505         | 6C            | 80<br>901        | CC 1        | c z          | ĉ 4    | 202         |
|                               |         | sd     | 14.7          | <b>1</b> .1   | 10.5           | 192.7          | 520.3       | 875.7                 | 167.2       | 124 1         | 6.101            | 98.9        | 9.7T         | 33.5   | 389.2       |
|                               |         | N obs  | 15            | 16            | 15             | 15             | 19          | 16                    | 16          | 15            | 15               | 16          | 16           | 17     | 191         |
|                               | El Nino | Mean   | 26            | 53            | <b>7</b> 3     | 270            | 727         | 446<br>3 <i>5</i> 7.0 | 177         | 111           | e ç              | 71          | 58<br>26.7   | 38     | 180         |
| Mean Tura (n                  | =9(1)   | nç     | 30            | 27            | 28             | 275            | 769         | 490                   | 194         | 134           | 011              | 103         | 75           | 43     | 190         |
| P-Value Tura                  | 6       | _      | 0.57          | 0.13          | 0.11           | 0.75           | 0.50        | 0.57                  | 0.79        | 0.65          | 0.10             | 0.40        | 0.36         | 0.69   | 0.18        |
| Yenisei                       |         | N obs  |               | 12            | 11             | 11             | 10          | 11                    | 11          | 11            | 11               | 12          | 12           | 13     | 136         |
|                               | La Nina | Mean   | 5517          | 5622          | 5884           | 5978           | 28701       | 16961                 | 26144       | 17523         | 16940            | 13956       | 6510         | 5530   | 17694       |
|                               |         | sd     | 1563.5        | 1878.1        | 2157.0         | 2429.9         | 9173.7      | 9592.8                | 2674.0      | 3083.7        | 2343.3           | 2272.3      | 1169.5       | 1214.1 | 20450 1     |
|                               |         | N obs  | 38            | 35            | 36             | 36             | 35          | 36                    | 36          | 35            | 35               | 32          | 35           | 34     | 423         |
|                               | Neutral | Mean   | 0.077         | 1508 0        | 5/44<br>2005 5 | 5024<br>7781 5 | 15026.7     | 16/13 3               | 27488       | 3630.6        | 076/1<br>2080 4  | 7677 ()     | 0000         | 1588 7 | 20787 6     |
|                               |         | N ohs  | 11            | 13            | 13             | 13             | 15          | 13                    | 13          | 14            | 14               | 16          | 13           | 13     | 161         |
|                               | El Nino | Mean   | 6426          | 6714          | 6734           | 7065           | 24477       | 77053                 | 24466       | 15944         | 15787            | 13498       | 7176         | 6152   | 17750       |
|                               |         | sd     | 1600 1        | 18979         | 2261.7         | 2441.0         | 10728.4     | 8998 7                | 4414.0      | 2613.3        | 2314.7           | 2489 5      | 1846.8       | 1344.8 | 19359 0     |
| Mean Yenisei                  | (U)=(U) | -      | 6039          | 6023          | 5984           | 6001           | 27534       | 77387                 | 26587       | 17485         | 16896            | 13969       | 6856         | 5840   | 18050       |
| P-Value Yenis                 | 5       |        | 0.34          | 0.24          | 0.34           | 0.17           | 96.0        | 0.83                  | CI.0        | 0.13          | 0.77             | 0.66        | 0.60         | 1 00.0 | 0.94        |

\_\_\_\_\_ = Monthly event runoff significantly different from the global monthly average

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iver    | SOI       | Month | ſ     | Ŀ      | М     | ¥      | MA     | Nſ    | JL     | AU    | S     | 0     | N     | D     | Total  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------|-------|--------|-------|--------|--------|-------|--------|-------|-------|-------|-------|-------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8       |           | N obs | 10    | 11     | 10    | 10     | 6      | 6     | 6      | 10    | 10    | 11    | 11    | 12    | 122    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | La Nina   | Mean  | 373   | 416    | 410   | 562    | 823    | 766   | 549    | 403   | 290   | 307   | 345   | 362   | 457    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | ps    | 186.7 | 233.0  | 246.7 | 342.1  | 293.4  | 408.8 | 241.0  | 207.5 | 141.8 | 173.9 | 164.8 | 178.5 | 281.8  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           | N obs | 37    | 35     | 37    | 37     | 36     | 38    | 37     | 36    | 36    | 34    | 35    | 34    | 432    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Neutral   | Mean  | 371   | 437    | 517   | 704    | 946    | 1016  | 885    | 530   | 342   | 370   | 434   | 406   | 584    |
| $ \begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           | ps    | 182 7 | 207 7  | 220.9 | 328.5  | 395.9  | 504.1 | 463.8  | 269.0 | 182.2 | 196.8 | 242.7 | 216.6 | 383.5  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •       |           | N obs | ∞     | 6      | ∞     | ∞      | 10     | ×     | 6      | 6     | 6     | 10    | 6     | 6     | 106    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | El Nino   | Mean  | 316   | 334    | 439   | 598    | 783    | 929   | 630    | 377   | 248   | 302   | 316   | 354   | 466    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | sđ    | 171.3 | 193.8  | 298.1 | 438.1  | 444.0  | 569.5 | 354.3  | 264.9 | 181.9 | 242.5 | 192.3 | 174.5 | 364.3  |
| Syr-Darya         0.73         0.43         0.38         0.45         0.43         0.40         0.0550         0.17         0.22         0.51         0.26         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70 | vr-Dar  | ya (n=55) |       | 363   | 416    | 486   | 662    | 968    | 962   | 788    | 482   | 317   | 345   | 397   | 388   | 542    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Syr-Da  | uya       |       | 0.73  | 0.43   | 0.38  | 0.45   | 0.43   | 0.40  | 0.0550 | 0.17  | 0.32  | 0.51  | 0.26  | 0.70  | 0.0002 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Γ       |           | N obs | 13    | 14     | 13    | 12     | 11     | 11    | 12     | 13    | 14    | 15    | 15    | 16    | 159    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | La Nina   | Mean  | 54    | 51     | 69    | 593    | 1022   | 313   | 160    | 117   | 102   | 67    | 16    | 67    | 207    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | sd    | 26.5  | 24.3   | 537   | 336.1  | 953.6  | 229.5 | 75.6   | 49.3  | 43.6  | 38.6  | 41.8  | 409   | 374.8  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | N obs | 44    | 42     | 44    | 45     | 44     | 47    | 45     | 44    | 43    | 41    | 42    | 41    | 522    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Neutral   | Mean  | 64    | 59     | 68    | 1019   | 1499   | 420   | 210    | 137   | 107   | 101   | 93    | 61    | 326    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | ps    | 36.7  | 33 1   | 58.5  | 1129 0 | 1213.8 | 232.3 | 88.9   | 62.0  | 46.6  | 42.9  | 46.3  | 30.5  | 658.6  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | N obs | 10    | 11     | 10    | 10     | 12     | 6     | 10     | 10    | 10    | - 11  | 10    | 10    | 123    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | El Nino   | Mean  | 57    | 51     | 81    | 731    | 1258   | 476   | 193    | 128   | 102   | 88    | 82    | 67    | 287    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           | ps    | 19.0  | 17.6   | 101.2 | 461.7  | 986.5  | 422.3 | 101 2  | 68.7  | 54.4  | 40.4  | 26.3  | 26.0  | 508.3  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al (n=  | e7)       |       | 19    | 56     | 70    | 668    | 1377   | 410   | 199    | 132   | 105   | 86    | 16    | 63    | 297    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jral    | ·         |       | 0.59  | 0.58   | 0.84  | 0.34   | 0.43   | 0.36  | 0.23   | 0.58  | 06.0  | 0.64  | 0.79  | 0.75  | 0.0813 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |           | N obs | 11    | 12     | 11    | 11     | 10     | 11    | 11     | 11    | 11    | 12    | 12    | 13    | 136    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | La Nina   | Mean  | 163   | 160    | 182   | 283    | 597    | 823   | 755    | 500   | 277   | 206   | 192   | 167   | 350    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -       |           | sd    | 61.8  | 56.5   | 42.5  | 110.2  | 202.2  | 346.3 | 277.5  | 102.1 | 99.66 | 51.1  | 38.6  | 42.4  | 274.5  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | N obs | 38    | 36     | 38    | 38     | 37     | 38    | 37     | 37    | 37    | 34    | _ 36  | 35    | 441    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Neutral   | Mean  | 163   | 175    | 184   | 308    | 593    | 857   | 766    | 538   | 263   | 212   | 200   | 186   | 373    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | ps    | 43.5  | 43.4   | 34.6  | 94.3   | 198 4  | 333.5 | 233.7  | 141.3 | 93.1  | 73.4  | 74 0  | 47.8  | 282.6  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | N obs | 6     | 10     | 6     | 6      | 11     | 6     | 10     | 10    | 10    | 12    | 10    | 10    | 119    |
| sd         50.7         36.4         39.5         89.2         289.5         50.9         330.9         168.9         70.4         71.4         81.3         55.8           aryn (n=58)         159         165         183         303         605         854         758         518         266         197         176           Narvn         0.30         0.0655         0.92         0.71         0.94         0.94         0.33         0.65         0.90         0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | El Nino   | Mean  | 135   | 137    | 179   | 307    | 654    | 878   | 733    | 466   | 218   | 191   | 190   | 156   | 353    |
| aryn (n=58) 159 165 183 303 605 854 758 518 258 206 197 176<br>Narvn 0.30 0.0695 0.92 0.76 0.71 0.94 0.33 0.29 0.65 0.90 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           | ps    | 50.7  | 36.4   | 39.5  | 89.2   | 289.5  | 509.9 | 330.9  | 168.9 | 70.4  | 71.4  | 81.3  | 55.8  | 3167   |
| Narvn   0.30 0.0695 0.92 0.76 0.71 0.94 0.33 0.29 0.65 0.90 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aryn (i | 1=58)     |       | 159   | 165    | 183   | 303    | 605    | 854   | 758    | 518   | 258   | 206   | 197   | 176   | 365    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Naryn   |           |       | 030   | 0.0695 | 0.92  | 0.76   | 0.71   | 0.94  | 0.94   | 0.33  | 0.29  | 0.65  | 060   | 0.18  | 0 63   |

 Table 57c:
 Monthly runoff distributions according to SOI classification ( Central Asia area).

= Monthly event runoff significantly different from the global monthly average

|                     |                          | Number of                | stations                                     | -              |
|---------------------|--------------------------|--------------------------|----------------------------------------------|----------------|
| Region              | influenced by<br>El Niño | influenced by<br>La Nina | influenced by<br>both El Niño and<br>La Nina | not influenced |
| Oceania-Pacific     | 10/19                    | 15/19                    | 9/19                                         | 3/19           |
| Far East Asia       | 14/25                    | 9/25                     | 5/25                                         | 8/25           |
| South East Asia     | 3/9                      | 4/9                      | 2/9                                          | 5/9            |
| Indian Subcontinent | 4/11                     | 9/11                     | 4/11                                         | 2/11           |
| Central Asia        | 3/13                     | 2/13                     | 1/13                                         | 9/13           |

## Table 58: Breakdown by area, of the number of stations teleconnectedto the different phases of the El Niño phenomenon.