Weltdatenbank Abfluß Bundesanstalt für Gewässerkunde Koblenz, Deutschland

Global Runoff Data Centre Federal Institute of Hydrology Koblenz, Germany

Report No. 19

Evaluation of Statistical Properties of Discharge Data of Stations Discharging Into the Oceans - Europe and Selected World-Wide Stations -

F. Portmann

June 1998

56068 Koblenz, Kaiserin-Augusta-Anlagen 15-17 Phone +49-261-1306-5224, Fax +49-261-1306-5280 email: grdc@koblenz.bfg.bund400.de

Foreword

Global coverage of observed discharge is essential to validate global circulation models and to assess teleconnections of climate-related processes between different regions. Likewise, observed discharge information is needed to compute surface water discharge and transport of matter and pollutants into the world oceans. Freshwater fluxes influence to a not yet fully understood degree the thermohaline circulation in the oceans as well as the deepwater formation especially in the Arctic region. In this situation, the evaluation of statistical properties of time series of selected rivers serve as a valuable source of information for climate and macro-scale hydrological modelling. Until recently, statistical information for a large number of globally distributed gauging stations has only been available from a publication of McMahon et al (1992). Building upon updated time-series, statistical procedures recommended by WMO (1988), a component of WMO's Hydrological Operational Multipurpose Sub-Programme (HOMS) developed by CHMI (1996), NWRI (1996) and from the Ruhruniversität Bochum (Schumann, 1995) have been customized and used for this report.

The selected statistical procedures are focused to the information requirements primarily for climate and macro-scale hydrological modelling. Therefore, statistical properties such as trends, jumps, periodicities and lag-times expressed as autocorrelation coefficients were evaluated. With this scope in mind, a selection of GRDC monthly discharge time series of 22 European and 11 non-European rivers within the period 1805 until 1996 was statistically evaluated in this report. For the non-professional statistican, each of the procedures is briefly explained and the statistical properties of each river are interpreted.

This report serves as a pilot report and a basis for discussion to shape the optimal form of reports foreseen in the future for the statistical evaluation of discharge data from other regions, continents and a selected gauging station network proposed by GRDC for global monitoring of surface water discharge into the oceans (GRDC report no 10, 3/1996).

Wolfgang Grabs Head, GRDC

Contents

Forewo	rd	••••
Conter	S	ii
1	Introduction	1
Part I (Theory)	3
2	Notation of the Statistical Formulae	3
3	References Acknowledgements	.16 .17
Part II	Results)	.18
4	Basic Information on Stations and Series	.18
5	Significant Jumps and Trends	.22
6	Significant Periodicities	.25
7	Basic Descriptive Annual and Monthly Statistical Properties	.26
	 7.1 Sample Interpretation 7.1.1 Example for Interpretation of Data - Overview of Annual Descriptive and Monthly Autocorrelation Statistics 	.26 .26
	7.1.2 Example for Interpretation of Data - Monthly Descriptive Statistics	.27
	7.2 Overview of Annual Descriptive and Monthly Autocorrelation Statistics	.29
	 7.3 Monthly Descriptive Statistics	.32 .32 .56 .56 .59 .64 .66
7.4	Trends of Annual and Monthly Series	.67

1 Introduction

For the evaluation of streamflow data the statistical properties of the time series are of key importance: They reflect the properties of the discharge which may be used for topics as e.g.: regional and global freshwater assessment, drinking water supply, variability of flows, improvement of estimation of runoff into the oceans, which itself is needed for global circulation climate models (GCM) in order to simulate accurately possible climate changes and their impacts on changes of climate zones, consistency of time series, etc.

In this evaluation, selected statistical properties computed from the data of the Global Runoff Data Centre are compiled. Several statistical programmes were used, as no single programme covered all aspects conveniently. These programmes were:

- Programme for analysis of long time series of hydrological data WCP-Water Project A.2 of the World Meteorological Organization (WMO), Version 4.22, July 1991, as adapted by the GRDC for its long time series, referred later on as programme "TS". (Basic reference: WMO/TD-No. 224(1988)).
- Change Point Problem Programme from the Czech Hydrometeorological Institute (CHMI) English version 1.40, referred later on as programme "CHPP".
 (Basic reference: Czech Hydrometeorological Institute (ed., 1996): Technology for detecting changes in time series of hydrological and meteorological variables (Change point problem) - Hydrological Operational Multipurpose System [HOMS], Prague 1996, 42 pp.).
- JUMP4-Programme from PD Dr. rer. nat. A. H. Schumann, Ruhr-Universität Bochum (RUB), Version of 24-April-1995, referred later on as programme "JUMP4". (Basic reference: A. H. Schumann (1995): Description of the "JUMP4"-Programme.- Ruhr-Universität Bochum (RUB), Bochum, Germany, 12 pp.)
- 4. Trend1-Programme from PD Dr. rer. nat. A. H. Schumann, Ruhr-Universität Bochum (RUB), Version of 03-May-1995, referred later on as programme "TREND1".
 (Basic reference: A. H. Schumann (1995): Description of the "Trend1"-Programme.- Ruhr-Universität Bochum (RUB), Bochum, Germany, 13 pp.)
- 5. RAISON for Windows from National Water Research Institute (NWRI), Version 1.0, referred later on as programme "RAISON". (Basic reference: National Water Research Institute [NWRI] (1996): Raison for Windows Version 1.0 User's Guide.- NWRI-Software, NWRI, Burlington, Ontario, Canada, Chapter 1-12, Appendix A-H)

The report is divided into two main parts following the introductory notes:

- Part I: the description of statistical formulae and theory that were applied, including bibliographic references (chapters 2 and 3)
- Part II: the results of the application of the respective statistical measures (chapters 4 to 7)
- common information related to all the stations including significant jumps, trends and periodicities of annual series
 - (chapters 4 to 6)
- the descriptive statistics of annual and monthly statistics including trends while giving a template for the statistical evaluation of the following statistics (chapter 7 with sub-chapters 7.1, 7.2, 7.3 and 7.4 for template, overview, individual descriptive

statistics and trends, respectively)

The results of most of the analyses and tests of the TS- and CHPP-programmes are the same, with the exception of some newer tests, improved automatic selection of maximum values of test statistics, display capacities, selection by prerequisites normal distribution and independence of observations. Respective parts of the programmes are based on the same formulas. As the results and programme aborts in special cases (N < 5 years, N = 186 years for the original version of the TS programme) were the same, it was assumed that both programmes work according to the same computational scheme.

The stations are a selected subset of European gauging stations of the GRDC database near the mouth of the rivers into the oceans with additional selected stations from other continents. The European set was chosen as a first example for the sake of the assessment of a homogeneous region and for natural conditions most familiar for the interpreter of the statistical parameters. Further stations were selected for the evaluation whether the kind of statistics and the subsequent interpretation is suitable for other regions, too.

For the evaluation of the data, special statistical values were selected for interpretation. As a basic prerequisite, the tests of normal distribution and independence of records were run with the CHPP-programme, followed by tests of changes in the mean and the variances, which showed to be the best method for detecting any changes or deviations within the time series. Monthly discharge sums and the mean annual values derived from them, were taken as the primary data base for the evaluation. It showed that most of the series of annual data were normally distributed, with a few exceptions of stations (e.g. Benue, Zambeze).

Part I (Theory)

2 Notation of the Statistical Formulae

For better interpretability of the statistical formulae describing the statistical parameters, some basic information on the notation is given, basically derived from the notation used in WMO (1988).

In the formulae which follow it is assumed that a record of N years of **monthly data** is available, that is has no gaps and that it is divided into m subsamples of equal size. Each subsample has a length of n years and m is the largest integer less or equal N/n.

The index for

- the month is j (j = 1, 2, ..., 12)
- the year is i (i = 1, 2, ..., n)
- the subsample is k (k = 1, 2, ..., m).

In summary, the following basic notation is used:

Ν	-	total number of years
n	-	number of years in a subsample
m	-	total number of subsamples
X _{iik}	-	value in year i, month j, subsample k of the variable
$N = m^*n = N^{\prime}$	-	total length of m subsamples, each of length n

(1) Mean (cf. YEVJEVICH 1972a)

Arithmetical mean of the values of a subsample k. It is a descriptive statistic with the basic property of being the value closest to all sampled values.

Formula:

$$\overline{X_k} = \frac{\sum_{i=1}^{n} \overline{X_{ik}}}{n}$$

with

$$\overline{X_{ik}} = \frac{\sum_{j=1}^{12} X_{jik}}{12}$$

(2) Minimum and Maximum; Range (cf. YEVJEVICH 1972a)

Although not statistical parameters, the minimum and maximum values X_{min} and X_{max} , respectively of a sample of time series are characteristic for a data set, as they define the range:

Formula:

Range =
$$X_{max}$$
 - X_{min}

(3) Standard Error of Mean

This is a measure for the deviation of the mean of a sample k from the true mean, based on the assumption of statistical distribution of the means. Increasing n decreases the standard error of the mean, but to reduce it by the factor of 2, the sampled number has to be quadrupled (SE/2 = $v S_k/4n$).

Formula:

$$SE(\overline{X}_{k}) = \sqrt{\frac{S_{k}}{n}}$$

(4) Standard Deviation (cf. YEVJEVICH 1972a)

The standard deviation is defined as the average amount that individual data deviate from their mean.

Formula:

$$S_{k} = \sqrt{\sum_{i=1}^{n} \overline{x}_{ik}^{2} \frac{1}{n-1}}$$

with

$$x_{ik} = \overline{X_{ik}} - \overline{X_k}$$

(5) Coefficient of Variation (cf. YEVJEVICH 1972a)

Standard deviation divided by the mean; often expressed in percentage. It is a measure of relative deviations of data from the mean.

Formula:

$$CV_k = \frac{S_k}{\overline{X}_k}$$

Typical critical values of CV_k for real data can be given as follows:

CV _k	Comments
< 0.3	small variation of data (as compared to mean)
0.3 - 0.6	relatively strong variation (as compared to mean)
> 0.6	very strong variation (as compared to mean)

It must be stated, that these values are only arbitrary limits. Depending on individual flow regimes, e.g. for arid or humid tropics regions, and application, these "critical" values may be different.

(6) Coefficient of Skewness (cf. HAAN 1977; YEVJEVICH 1972a)

Skewness means lack of symmetry, and measures of skewness show the extent to which the distribution departs from symmetry. A distribution with positive skewness is said to be skewed to the left, that is, the gravitational centre is located on the left side while some extreme values on the right side occur. A negatively skewed distribution is skewed to the right, the gravitational centre is located on the right side while some extreme values on the right side while some extreme values on the left side while some extreme values on the right side while some extreme values on the left side occur. Caution has to be taken, as, for small samples, the standard error is high.

Formula:

$$CS_{k} = \frac{n}{(n-1)(n-2)} \frac{\sum_{i=1}^{n} \overline{x}_{ik}^{3}}{S_{k}^{3}}$$

The critical values of CS_k for symmetrical distribution, positive skew, and negative skew, are as follows:

CS _k		Comments
Critical values	Sample values	
> 0 0.5		positive skew (right skew, left-hand steep): some more relatively big values
0	0.1	symmetrical (no skew)
< 0 -0.8		negative skew (left skew, right-hand steep): some more relatively small values

(7) Coefficient of Kurtosis (cf. HAAN 1977; YEVJEVICH 1972a)

Kurtosis may be defined as peakedness, and a measure of kurtosis serves to differentiate between a flat distribution curve, and a sharply peaked curve of . For a normal distribution, also called Gauss-distribution and having a bell-shaped probability density function, it is equal to 3, given the formula used here. If the distribution is more sharply peaked than the Normal, i.e. if it has long, small tails, the kurtosis is greater than 3; if it is flatter than the Normal, the kurtosis is less than 3. Unless a large set of data is available there is little point in using the kurtosis as a measure of the true shape since it is greatly affected by one or two outlying data. Caution has to be taken, as, for small samples, the standard error is high. But exactly the sensibility for extreme values can be used to assess the presence and influence of extreme values and test for normal distribution. Sometimes, the kurtosis computed by this formula is also called "excess" ε when a constant of 3 is subtracted, resulting in an value of 0 for normal distribution (YEVJEVICH 1972a). Although, the Kolmogorov- Smirnov test (see number 11) is better suited as test for normality, as it is less sensible for rare extreme values.

Formula:

$$CK_{k} = \frac{n^{2}}{(n-1)(n-2)(n-3)} \frac{\sum_{i=1}^{n} \overline{x}_{ik}^{4}}{S_{k}^{4}}$$

The critical values of CK_k and for the respective excess ε , for normal, sharply peaked, and flat distribution, are as follows:

CK _k		3		Comments
Critical values	Sample values	Critical values	Sample values	
> 3	3.6	> 0	0.4	leptokurtic (positive excess): extreme peakedness - more mean values with less bigger and smaller values
3	2.9	0	-0.1	normal distribution, bell-shaped (no excess)
< 3	2.1	< 0	-0.9	platykurtic (negative excess): peakedness combined with tailedness, lack of shoulders - less mean values with more bigger and smaller values

(8) _ Coefficients of Autocorrelation (cf. HAAN 1977; BOX & JENKINS 1970)

A plot of the autocorrelation function against the time lag is called a correlogram - it is useful to determine whether successive observations are independent or not. Thus, it is sometimes called the "memory" of a stochastic process. In the case of a random distribution, the correlogram will look like (a), in the case of the existence of a periodic process it will look like (b) (HAAN 1977). To test the independence of the data, the first one or the two first coefficients ($r_1 = AC(1)$ and $r_2 = AC(2)$, with "lags" of 1 or 2 time steps, respectively) are needed. To run this test, stationarity of the data is assumed, i.e. constant mean and variance throughout the time interval (BOX & JENKINS 1970).

Formula:

$$r_{lk} = \frac{\sum_{i=l}^{n-l} (\overline{X}_{ik} - \overline{X}_{k})(\overline{X}_{i+lk} - \overline{X}_{k})}{\sum_{i=l}^{n} (\overline{X}_{ik} - \overline{X}_{k})^{2}}$$

where lags l = 1, 2, ..., M; The values range theoretically from $-1 = r_1 = +1$, with the following critical values:

r _i		Comments
Critical	Sample	
values	values	
> 0	0.6	strong positive autocorrelation
	0.2	positive autocorrelation:
	[positive dependency from the antecedent values with
		time lag l,
		e.g. $l = 1$: dependency on values immediately before
0	0.1	no autocorrelation, no dependency on antecedent value
< 0	-0.15	negative autocorrelation:
		negative dependency from the antecedent values with
		time lag l,
		e.g. $l = 1$: dependency on values immediately before
	-0.6	strong negative autocorrelation

In the TS programme, maximum lag M is the largest integer less than or equal to (n-1)/6. For practical purposes, the evaluation of the ACs were confined to a maximum lag of 24 months when considering monthly values.

(9) Rescaled Adjusted Range (cf. YEVJEVICH 1972a; MAIDMENT 1992)

Descriptive statistics useful for studying the characteristics of storage. It is not appropriate for formal statistical testing.

The adjusted range R^* is the minimum storage capacity that a reservoir with annual inflows X_i should have in order to provide a constant annual outflow equal to the sample mean, which is considered to be equal to the mean of the hydrological process. The reservoir maintains the smallest acceptable reserve when $RS_{s,t}$ occurs and is of sufficient capacity to store the water when $RS_{s,t}^+$ occurs. For the calculation, monthly discharge values are used (HAAN 1977, MAIDMENT 1992).

Formula:

Calculate the running sum of the differences of the monthly values from their overall mean \overline{X} , i.e.

$$RS_{s,t} = \sum_{i=1}^{s} \sum_{j=1}^{t} (X_{ij} - \overline{X}) + \sum_{j=1}^{t} (X_{s+1,j} - \overline{X})$$
$$X = \sum_{i=1}^{N} \sum_{j=1}^{l^2} \frac{X_{ij}}{(N*12)}$$

where s = 0, 1, 2, ..., N-1; t = 1, 2, ..., 12

and retain the largest and smallest $RS_{s,t}$ ($RS_{s,t}$ and $RS_{s,t}^{+}$).

The **adjusted range R*** is calculated as

$$R^* = RS_{s,t} - RS_{s,t}^+$$

The rescaled adjusted range R_a^* is calculated as a standardised R^* by the formula

$$R_{a}^{*} = R^{*}/S_{0}$$

where S₀ is the standard deviation of the series of monthly data, all values considered together:

$$S_0 = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{12} (X_{ij} - \overline{X})^2 \frac{1}{12N - 1}}$$

(10) Hurst's Coefficient (cf. CHOW 1964; HAAN 1977; MAIDMENT 1992)

Descriptive statistics useful for studying the characteristics of storage. It is not appropriate for formal statistical testing. For a long normal independent series and autoregressive processes, h is theoretically 0.5 (HAAN 1977; MAIDMENT 1992). Although, in various time series of natural time series (discharge, precipitation, temperature, tree-ring) h was found to be higher: $h \sim 0.73 \pm 0.09$ and mean $R_a^* \sim N^h$ with h > 0.5 (MAIDMENT 1992).

Formula:

$$h = \frac{\ln R_a^+}{\ln (6N)}$$

For the testing of consistency and homogeneity of the time series, tests of normal distribution, independence, changes in the mean and variance including trends with the following statistics were computed. The tests were only done when the respective test assumptions were fulfilled:

(11) Kolmogorov-Smirnov Test for Normal Distribution (cf. CMHI 1996, SACHS 1984)

By Kolmogorov - Smirnov tests for one sample, we test the hypothesis that a selected continuous random variable has a probability distribution with function F(x), which does not contain any unknown parameter. In this data evaluation, the normal probability distribution function is used as a reference. The tests are based on the biggest absolute difference between empirical and theoretical distribution function. The following procedure is used:

- 1. The series $x_1, x_2, ..., x_n$ is ranked in increasing order of magnitude, so that $x'_1 = x'_2 = ... x'_n$.
- 2. Empirical cumulative distribution function is derived as follows

 $\begin{array}{rcl} & 0 & \mbox{ for } & x < x'_1 \\ F_e(x) &= & k/n & \mbox{ for } & x'_k = x < x'_{k+1}, \, k = 1, \, 2, \, ... \, , \, n\mbox{-}1 \\ 1 & \mbox{ for } & x'_n = \, x \end{array}$

3. Maximum absolute difference between empirical and theoretical distribution is found

 $D_n = \max |F_e(x) - F(x)|$ for $-\infty < x < \infty$

4. D_n is subsequently compared with the respective critical value selected from a table. If $D_n = D_{n \, crit}$, the null hypothesis H_0 , a distribution according to the desired - here the normal - distribution, is rejected. There are several methods of deriving the respective critical values, especially for small sample sizes and for fit to normal distribution while equally estimating mean and variance from the sample values (SACHS 1984). Here, the reference of STEPHENS 1974 used by the CHPP-programme is used, presenting almost identical critical values for the optimised fit to normal distribution according to SACHS 1984. The following table results, where

$$\sqrt{n*} = \sqrt{n} - 0.01 + 0.85/\sqrt{n}$$
.

Table of critical values for the Kolmogorov-Smirnov test:

			I
Error probability α	0.10	0.05	0.01
Significance level	0.90	0.95	0.99
Formula D _{n crit} =	0.819 / √n*	0.895 / √n*	1.035 / √n*
n	D _{n crit}	D _{n crit}	D _{n crit}
5	0.314	0.343	0.397
10	0.239	0.262	0.303
30	0.146	0.159	0.184
50	0.114	0.125	0.144
100	0.081	0.089	0.103

That is, given a sampled D_n of 0.25 from a sample of n = 10 elements and an error probability α of 5 % ($D_n _{crit} = 0.262$), the H_0 is not rejected, while for an error probability α of 10 % ($D_n _{crit} = 0.239$), the H_0 is rejected.

(12) Test of Number of Runs and Independence (cf. WMO 1988; CMHI 1996; SNEYERS 1975)

In this test, the number of consecutive observations above or below the median value is compared with that found for a random process. Non-parametric test of randomness and independence, used for annual series and for series of individual months.

Formula:

Define a run as a set of consecutive observations above or below the median of the observations. Let n = number of data in the series and $n_r = number$ of runs, then:

Expected number of runs:

$$E(n_r) = l + \frac{n}{2}$$

Variance of the number of runs:

$$Var(n_r) = \frac{n(n-2)}{4(n-1)}$$

The test statistic is:

$$u = \frac{n_r - E(n_r)}{\sqrt{Var(n_r)}}$$

with corresponding quantiles of normal distribution for u.

When testing the null hypothesis H_0 , statistical independence of the observations, the H_0 is rejected for the following conditions:

Against two-sided alternative - the observations are not independent:

 $|u| \ge u(\alpha/2)$

Against left-sided alternative - elements of the same kind tend to cumulate, i.e. create groups:

 $u \leq -|u(\alpha)|$

Against right-sided alternative - elements of different kinds tend to alternate regularly:

 $u \ge |u(\alpha)|$

Respective critical values of the standard normal distribution for $u(\alpha/2)$ and $|u(\alpha)|$ are given in the following table (CMHI 1996, SACHS 1984):

Critical parameter	Error probability α				
	0.10	0.05	0.01		
u(α/2) (two-sided)	1.645	1.960	2.576		
lu(α) (one-sided)	1.282	1.645	2.326		

That is, given an error probability α of 5 % and a sampled u of -1.05:

- the H₀ is not rejected against the two-sided alternative (lul < $u(\alpha/2)$, i.e. 1.05 < 1.96)

- the H₀ is not rejected against the left-sided alternative ($u > -lu(\alpha)l$, i.e. -1.05 > -1.96)

- the H₀ is not rejected against the right-sided alternative ($u < |u(\alpha)|$, i.e. -1.05 < 1.96).

(13) Periodogram and Fisher's Test of Periodicity (cf. YEVJEVICH 1972b; CMHI 1996)

A hydrological series may be looked at as one out of several possible realisations of a continuous random hydrological process $\{x_t\}$ creating hydrological series.

The finite series of length T may be fitted by a number of trigonometric functions of the following type:

 $x_t = \mu_x + C_1 cos(2\pi f_1 t + \Theta_1) + C_2 cos(2\pi f_2 t + \Theta_2) + \ldots + C_j cos(2\pi f_j t + \Theta_j) + \ldots + C_n cos(2\pi f_n t + \Theta_n)$ They have an infinite number of noncommensurate ordinary frequencies, f_j , or their corresponding angular frequencies, λ_j . They will fit every point of the series when frequencies are sufficiently dense on the line of the ordinary frequencies f_j , or on the line of their corresponding angular frequencies λ_j , while their parameters C_j and Θ_j may be estimated for each f_j and λ_j by adequate estimation method.

If only a limited number of f-values or λ -values is used in approximating the sampled series, each particular discrete value f_i or λ_i with its respective estimates of amplitude C_i and phase Θ_i has the variance $C_i^2/2$.

A plot of the variance $C_j^2/2$ (sometimes also C_j , C_j^2 , or $\Sigma C_j^2/2$) with i = 1, 2, ... j versus the frequencies f_j or λ_j represents the line-spectrum, the discrete spectrum, or the periodogram.

Using angular frequencies λ_j , the variance line-spectrum or discrete spectrum of the series x_t is given by:

$$C_j^2/2 = \Psi(\lambda_j)$$

where

j = 1, 2, ... $\Sigma C_i^2/2 = variance(x_t) = \sigma_t^2.$

When the frequency intervals $\Delta\lambda$ of the λ -line is used, and for each interval $\Delta\lambda$ at λ , the variance of all fitted trigonometric functions is defined as ΔD , then for $\Delta\lambda \rightarrow 0$ the following term

$$\lim \Delta D / \Delta \lambda = v_{\lambda}$$

represents the variance density at any point for λ of the λ -line. Analogous to the variance line-spectrum, the **variance density spectrum**, or **continuous spectrum** is given by:

 $v_{\lambda} = \Psi(\lambda)$

For a given population series, λ has the range 0 to 2π , so that the population variance is given by the following integral:

$$\operatorname{var}(\mathbf{x}_{t}) = \sigma_{t}^{2} = \int_{0}^{2\pi} v_{\lambda} \, d\lambda = \int_{0}^{2\pi} \Psi(\lambda) \, d\lambda$$

The population variance densities v_{λ} are estimated by the sample variance densities v_{λ} .

The so-called frequency domain in representing properties of a series uses either the line-spectrum or the variance density spectrum, as chosen appropriate in each particular case. The use of $C_j^2/2$ in the line-spectrum and v_{λ} in the continuous spectrum are convenient conventional definitions of spectra, because the sums of all $C_j^2/2$ and the integrals of v_{λ} in the range of spectra of frequencies equal the variance of a variable.

For the estimation of parameters of periodic components, the mathematical composition of the time series is decisive. If the equation of the series is composed of a periodic and a stochastic stationary (i.e. constant mean and variance) component, for a discrete time series the description may take the form:

$$x_{p,\tau} = \mu_{\tau} + \sigma_{x} \epsilon_{p,\tau}$$

where

 $\tau = 1, 2, ..., \varpi$

 ϖ = the basic period of the series expressed as a discrete number p = 1, 2, ..., n

n = the number of the periods ù in the finite series

(when ϖ equals a year, n is the number of years, N = n ϖ is the length in years of the sampled series) μ_r = periodic component in the mean

 σ_x = standard deviation of $x_{p,\tau}$ (assumed to be constant)

 $\varepsilon_{p,\tau}$ = stochastic component

The periodic component μ_{τ} may be described mathematically by a Fourier composition:

$$\mu_{\tau} = \mu_x + \sum_{j=1}^{m} [\operatorname{Ajcos}(2\pi \operatorname{f} j\tau) + \operatorname{Bjsin}(2\pi \operatorname{f} j\tau)]$$

where

 μ_x = the mean of the series A_j , B_j = Fourier coefficients m = number of significant harmonics

The Fourier coefficients may be estimated be different methods not described here. It is only important to note following definition of the frequencies

$$f_{j} = j / \omega$$
$$\lambda_{j} = 2 \pi j / \omega$$

For specific applications, the periodogram is a simple and appropriate tool for describing and testing the presence of periodic components of a sampled time series. Within the CHPP-programme, the **periodogram** used for frequencies $z \in \{-\pi, \pi\}$ is defined as:

$$I(z) = \frac{I}{2\pi n} \left| \sum_{t=1}^{n} x_t e^{-itz} \right|^2$$

Values $I(z_r)$ are calculated for $z_r = 2 \pi r/N$ for $r = 1, 2 \dots m$ (N = 2 m + 1 for odd N, and N = 2 m for even N), that is, for the interval $\{0, \pi\}$. The $I(z_r)$ values are then ranked in decreasing order, denoted as V_1 (the biggest), $V_2 \dots$, V_m , and statistic W is given by

$$W = \frac{V_1}{V_1 + \ldots + V_m}$$

The distribution of statistic W can be described for cases $m \le 50$ by

$$P(W > x) \cong m (1 - x)^{m-1}$$

where

 $\begin{aligned} x &= g_1 = C_{max}^2 / 2^* s_x^2 \\ C_{max} &= \text{the largest value of the sequence of } C_j^2 \text{ values} \end{aligned}$

 s_{x}^{2} = estimate of the variance of $x_{p,\tau}$,

provided only one harmonic periodicity is significant. For two or more significant harmonics an alternate scheme with g_i calculated differently is used.

and

$$P\left(W > \frac{z + \ln(m)}{m}\right)^{m} \to \infty 1 - \exp((-e^{-z}))$$

for cases m > 50.

Critical value is for $m \le 50$

$$W_{crit} = 1 - \exp\left[\frac{1}{(m-1)}\ln\left(\frac{\alpha}{m}\right)\right]$$

and for m > 50

$$W_{crit} = \frac{Z + \ln(m)}{m}$$

where $Z = -\ln[-\ln(1 - \alpha)]$.

When the time series is described in the mathematical form cited above, testing the significance of periodicities might be done by **Fisher's test**, yielding the best results when the variance of the process is estimated from the sample data. Basically, the parameter applied for the testing is the variance of the j-th harmonic $C_j^2 / 2$ if the Fourier coefficients A_j and B_j are estimated in the specific manner referred to above. The $C_j^2 / 2$ value is compared to a critical $C_j^2 / 2$ value of an random stochastic process. Sampling of the testing parameter $C_j^2 / 2$ is necessary. The respective phase for a significant periodicity may be estimated from the computed Fourier coefficients.

By the test, the series involves statistically significant frequency z'_1 (that is $V_1 = I(z'_1)$) if W is statistically significant. We can proceed by defining

$$W^{(1)} = \frac{V_2}{V_2 + \dots + V_m}$$

and $P(W^{(1)} > x)$ for m - 1 in order to test statistical significance of frequency z'_2 , etc.

In this generalised test, the hypothesis

H₀: The series does not involve any periodic component

(the series represents a "white noise process", i.e. is a random process with no significant periodicities) is tested against alternative

H₁: The series includes statistically significant frequencies $z'_1, ..., z'_p$, or, in other words, statistically significant periods $T'_{1,...}, T'_p$ with relationship $T'_k = 2 \pi / z'_k$.

As the critical values change with the sampled series and its size, while the CHPP programme equally does not specify them directly, no table of critical values and an example are given here.

(14) ____ Test for Jump in the Mean by Testing Cumulative Deviations (cf. BUISHAND 1982)

The purpose of this test is to detect the existence of a jump in the mean after m observations, e.g. in case of change of location of gauging station, installation of a reservoir upstream, etc.:

$$E(X_{i}) = \begin{bmatrix} \mu & i = 1, ..., m \\ \mu + \Delta & i = m + 1, ..., n \end{bmatrix}$$

The basic assumptions are that the observations are independent and normally distributed. The test can still be applied, however, when there are slight departures from normality.

Only one test of this type was used in this analysis, although others exist (cf. WMO 1988).

A plot of the cumulative deviations from an average value is sometimes called "residual mass curve". This test is used for the detection of the position of one possible jump in the mean. A normality and independence assumption is necessary (see above).

Formula: Given the observations $X_1, ..., X_i, ..., X_n$ we let

$$S_{0}^{*} = 0, \ S_{k}^{*} = \sum_{i=1}^{k} (X_{i} - \overline{X}) \qquad k = 1, 2, ..., n$$
$$D_{y}^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n}$$

and the rescaled adjusted partial sums

$$S_k^{**} = \frac{S_k^*}{D_y}$$
 $k = 0, 1, ..., n$ (rescaled : dividing by standard deviation)

The test statistic is

$$Q = \max_{0 \le k \le n} |S_k^{**}|$$

High Q values are an indication for a change in level.

Q/n			
n	90 %	95 %	99 %
10	1.05	1.14	1.29
20	1.10	1.22	1.42
30	1.12	1.24	1.46
40	1.13	1.26	1.50
50	1.14	1.27	1.52
100	1.17	1.29	1.55
8	1.22	1.36	1.63

Percentage points of the statistic Q are given in the following table (BUISHAND 1982):

According to BUISHAND (1982), the test based on the cumulative deviations and Worsley's likelihood ratio test are preferable respectively in the case of a change near the middle or near the ends of the series.

For both tests, the position of maximum $|S_k^*|$ (or $|Z_k^*|$, respectively, for Worsley's likelihood test) can be taken as an estimate of the change-point m.

(15) Test for Jump in the Mean and Spectrum (cf. CMHI 1996)

For this and the following test, it is assumed (PICARD 1985; JARUŠKOVÁ 1990 b) besides normal distribution, that the random variable $x_1, ..., x_n$ is an autoregressive process of q-th order AR (μ , σ^2 , a):

$$x_{t} - \mu = a_{1} (x_{t-1} - \mu) + \dots + a_{q} (x_{t-q} - \mu) + e_{t}$$

where $e_t has N(0, \sigma^2)$.

Under the above assumptions, the hypotheses are defined as follows:

Hypothesis H₀: $x_1, ..., x_n$ is generalised autoregressive sequence AR (μ , σ^2 , a).

Alternative H₁: for some $k \in \{1, ..., n-1\}$, $x_1, ..., x_k$ is a generalised autoregressive sequence AR (μ', σ^2, a') , $x_{k+1}, ..., x_n$ is a generalised autoregressive sequence AR (μ'', σ''^2, a'') , $\theta'=(\mu', \sigma^2, a'')$, $\theta''=(\mu'', \sigma''^2, a'')$, and $\theta' \neq \theta''$ while $\sigma' = \sigma'' = \sigma$.

It is further assumed, that the roots of polynomial $z^{q}-a_{1}z^{q-1}$... $a_{q} = 0$, where a_{i} are relevant autoregression parameters, are inside a unit circle.

Under the above assumptions

$$L(k) = \frac{n}{2} \ln \left(\frac{n - 2q}{n - q} \cdot \frac{RSS}{RSS' + RSS''} \right)$$

where

$$RSS = \sum_{i=g+1}^{n} [(x_i - \mu) - a_1(x_{i-1} - \mu) - \dots - a_q(x_{i-q} - \mu)]^2$$

 μ is an estimate of relevant mean, that is of $\overline{x}, \overline{x}'$, or \overline{x}'' , and a_i are estimates of autoregression parameters calculated from the subsamples, that is

RSS
 for

$$i = q + 1, ..., n$$

 RSS'
 for
 $i = q + 1, ..., k$

 RSS''
 for
 $i = k + q + 1, ..., n$.

The test statistic is then derived from function L(k).

A test modification is applied :

(i) The test is modified by **cutting off** the beginning and end of the series (suitable for detecting a change occurring close to the beginning and end of the series):

Supreme L(k) [Sup L(k)] is compared with critical value taken p = 1 from tables for cutting off 10 % of observations from both sides (0,1 n = k = 0,9 n) or for 15 % and 20 %, respectively.

(ii) The test is modified by **penalization** (suitable for detecting change occurring close the midpoint of the series):

$$\sup_{1 \le k \le n} \frac{k}{n} (1 - \frac{k}{n}) L(k)$$

is compared with critical value taken for p = 1 from a respective table.

The supreme, derived for relevant part of the series (for cutting off) or modified by factors, is compared with a critical value selected for p = q + 1 from the following tables (cutting off 10 %, cutting off 15 or 20 %, or penalization, respectively).

Table of critical values for likelihood	ratio test as modified by	y cutting off 10 %	(CHMI 1996):
---	---------------------------	--------------------	--------------

Level of significance α	p=1	p=2	p=3	p=4
0.25	2.76	4.06	5.15	6.16
0.20	3.07	4.44	5.48	6.48
0.10	3.86	5.31	6.48	5.57
0.05	4.65	6.20	7.41	8.53

Table of critical values for likelihood ratio test as modified by cutting off 15 % and 20 %:

Level of sig	Level of significance α		p=2	р=3	p=4
15 %	0.10	3.62	5.06	6.20	7.26
	0.05	4.41	5.92	7.14	8.24
20 %	0.10	3.43	4.81	5.95	6.99
	0.05	4.21	5.68	6.88	7.96

Level of significance α	p=1	p=2	p=3	p=4
0.25	0.5194	0.7850	1.0089	1.3135
0.20	0.5754	0.8530	1.0854	1.2971
0.15	0.6475	0.9388	1.1811	1.4009
0.10	0.7489	1.0570	1.3115	1.5416
0.05	0.9222	1.2542	1.5265	1.7715
0.02	1.1513	1.5086	1.8001	2.0615
0.01	1.3246	1.6978	2.0018	2.2739

Table of critical values for likelihood ratio test as modified by penalization:

(16) Test for Jump in the Mean, Variance and Spectrum (cf. CMHI 1996)

This test was derived under similar assumptions to those described for the previous test (JARUŠKOVÁ 1990). As change in variance σ^2 is also taken into account, the dimension of the model is p = q + 2, where q is the order of AR process, which, with respect to the range of critical values given in tables, cannot exceed 2.

Function L(k) is defined as

$$L(k) = \frac{n}{2} \ln\left(\frac{RSS}{2(n-q)}\right) - \frac{k}{2} \ln\left(\frac{RSS'}{2(k-q)}\right) - \frac{n-k}{2} \ln\left(\frac{RSS''}{2(n-k-q)}\right)$$

were RSS, RSS' and RSS'' are relevant to those described above, and the test statistic is again derived from this function.

3 References

ANDERSON, O. D. (1977): Time series analysis and forecasting. The Box-Jenkins approach.- Butterworths.

- BOX, G. E. P. & G. M. JENKINS (1970): Time series analysis, forecasting and control.- Holden Day.
- BUISHAND, T. A. (1982): Some methods for testing the homogeneity of rainfall records.- Journal of Hydrology, 58(1982), 11-27.
- CAVADIAS, G. S. (1992): A survey of current approaches to modelling of hydrological time-series with respect to climate variability and change. WCASP-23.- WMO/TD-No. 534.
- CHOW, V. T. (1964): Handbook of applied hydrology.- McGraw Hill, New York.
- CZECH HYDROMETEOROLOGICAL INSTITUTE [CHMI] (1996): Technology for detecting changes in time series of hydrological and meteorological variables (Change point problem). Hydrological Operational Multipurpose System [HOMS] of WMO, HOMS Component no. I 00.3.02. - Prague, 1996, pp. 43.
- DAHMEN, E. R. & M. J. HALL (1990): Screening of hydrological data: Tests for stationarity and relative consistency.- ILRI International Institute for Land Reclamation and Improvement, Wageningen.
- HAAN, C. T. (1977): Statistical methods in hydrology.- Iowa State University Press, Ames.
- HIRSCH, R. M. & J. R. SLACK (1984): A non-parametric trend test for seasonal data with serial dependence. -Water Resources Research 20(6) (1984), 727-732.
- JARUŠKOVÁ, D. (1990 a): Vyhledávání zmen v prutokových radách (Detecting changes in discharge series). -Proceedings of the conference on ROBUST 90. JCSMF, Prague, pp. 89-95.

- JARUŠKOVÁ, D. (1990 b): Vyhledávání zmen v prutokových radách (Detecting changes in discharge series). Vodohosp. Cas. **38**(5) (1990), 501-515.
- MAIDMENT, D. R. (1992): Handbook of hydrology.- McGraw-Hill, New York.
- MCMAHON, T. A.; FINLAYSON, B. L.; HAINES A. T. & R. SRIKANTHAN (1992): Global runoff Continental comparisons of annual peak flows and peak discharges.- Catena-Verlag, Cremlingen-Destedt.
- PICARD, D. (1985): Testing and estimating changepoints in time series. Adv. Appl. Prob. 17(1985).

SACHS, L. (1974): Angewandte Statistik. Anwendung statistischer Verfahren [Applied statistics. Application of statistical methods].- Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

SCHONWIESE, C. D. (1983): Praktische Statistik.- Gebrüder Bornträger, Berlin, Stuttgart.

- SNEYERS, R. (1975): Sur l'analyse statistique des séries d'observations.- WMO Technical Note No. 415.
- STEPHENS, M. (1974): E.D.F. Statistics for goodness of fit.- Journal of the American Statistical Association 69(1974), 730-737.
- VÖROSMARTY, C. J.; MEYBECK, M.; FEKETE, B. & K. SHARMA (1997a): The potential impact of neocastorization on sediment transport by the global network of rivers. In: D. WALLING & J.-L. PROBST (eds.): Human impact on erosion and sedimentation, IAHS Press, Wallingford, UK, 261-272.
- VÖROSMARTY, C. J.; SHARMA, K.; FEKETE, B.; COPELAND, A. H.; HOLDEN, J.; MARBLE, J. & J. A. LOUGH (1997b): The storage and aging of continental runoff in large reservoir systems of the world.- Ambio, 26(1997), 210-219.
- WORLD METEOROLOGICAL ORGANIZATION [WMO] (1966): Climatic change.- WMO / Technical Note No. 79.
- WORLD METEOROLOGICAL ORGANIZATION [WMO] (1988): Analyzing long time series of hydrological data with respect to climate variability Project description. WCAP 3.- WMO/TD-No. 224.
- WORLD METEOROLOGICAL ORGANIZATION [WMO] (1993): Workshop on WCP-Water Project A.2 Analyzing long time series of hydrological data, Geneva, 9-13 November 1992.- Final Report.
- WORSLEY, K. J. (1979): On the likelihood ratio test for a shift in location of normal populations.- Journal of the American Statistical Association, 74(1979), 365-367.
- YEVJEVICH, V. (1972a): Probability and statistics in hydrology.- Water Resources Publications, Fort Collins, Colorado, USA.
- YEVJEVICH, V. (1972b): Stochastic processes in hydrology.- Water Resources Publications, Fort Collins, Colorado, USA.

Acknowledgements

I would like to thank Mr. Michael Hils for the preparation of a first version of the theoretical part of this report based on WMO publication WMO/TD-No. 224 (1988).

Part II (Results)

4 Basic Information on Stations and Series

The GRDC data of the following gauging stations were selected for data evaluation and interpretation, giving the years of first and last data records of the period for which data were available:

GRDC	River	Station	Ctry	Lat	Long	Basin size	First	Last
Function		I				(KIII*)	уеаг	year
6233650	Angerman	Solleftea		6317N	1727F	30640	1965	1902
6226800	Fhro	Tortosa		4082N	052F	84230	1953	1983
6338100	Ems	Versen		5273N	725E	8345	1980	1984
6125100	Garonne	Mas-D'agenais	FR	4442N	023E	52000	1920	1979
6731400	Gloma	Langnes	NO	5960N	1112E	40221	1901	1984
6217100	Guadalquivir	Alcala del Rio	SP	3752N	598W	46995	1952	1993
6227500	Jucar	Masia de Mompo	SP	3715N	065W	17876	1925	1981
6340110	Labe	Neu-Darchau	DL	5323N	1088E	131950	1965	1988
6123100	Loire	Montjean	FR	4738N	083W	110000	1863	1979
6970250	Northern Dvina	Ust-Pinega	RS	6410N	4217E	348000	1881	1993
	(Severnaya	Ŭ						
	Dvina)							
6970650	Pechora	Ust-Tsilma	RS	6547N	5225E	248000	1932	1984
6335020	Rhein	Rees	DL	5177N	640E	159680	1930	1997
6122100	Seine	Poses	FR			65000	1971	1977
6609500	Severn	Bewdley	UK	5237N	232W	4330	1965	1984
6502100	Shannon	Killaloe	IE	5280N	842W	11690	1973	1979
6730500	Tana	Polmak	NO	7007N	2805E	14005	1912	1987
6604610	Тау	Ballathie	UK	5649N	337W	4587	1980	1984
6113050	Tejo	Almourol	PO	3947N	837W	67490	1976	1984
6607700	Thames	Teddington	UK	5142N	032W	9950	1965	1984
6229500	Vaenern-Goeta	Vaenersborg	SN	5838N	1232E	46830	1807	1992
6337200	Weser	Intschede	DL	5297N	913E	37788	1921	1984
6608500	Wye	Ddol Farm	UK	5224N	347W	174	1977	1989
Non-Euro	pean Stations	1						
1362100	Nile	el Ekhsase	EG	2970N	3128E	2900000	1973	1984
1835800	Benue	Yola	NI	925N	1250E	107000	1960	1989
1891500	Zambeze	Matundo-Cais	MZ	1615S	3358E	940000	1976	1979
2181900	Changjiang	Datong	CI	3077N	11762E	1705383	1923	1986
	(Yangtze)				1050073	515000	1000	1001
2469260	Mekong	Pakse	LA	1512N	10580E	545000	1980	1991
2903420	Lena	Kusur	RS	7070N	12765E	2430000	1935	1994
2909150	Yenisei	Igarka	RS	6748N	8650E	2440000	1936	1995
2912600	Ob	Salekhard	RS	6657N	6653E	2949998	1930	1994
3206720	Orinoco	Puente Angostura	VN	815N	6360W	836000	1923	1989
3265300	Paraná	Corrientes	AG	2797S	5885W	1950000	1904	1983
4127800	Mississippi	Vicksburg, Miss.	US	3232N	9090W	2964252	1965	1983

For the Rivers Ebro, Guadalquivir and Jucar, all situated in Spain, new data of the CEDEX institute were used instead of GRDC data. The series are identical with the data series already stored in the GRDC data base starting in the year 1965.

As data gaps were present, the following sub-series were analysed separately. If no explicit year of begin and end is mentioned, the respective first and last years of the records were used. For some selected stations, coinciding series were chosen for optimal comparability:

GRDC	River	Station	First	Last	Sub-	Begin	End
number			year	year	period	year	year
Europe							
6233650	Angerman	Solleftea	1965	1992			
6226800	Ebro	Tortosa	1953	1983			
6338100	Ems	Versen	1980	1984			
6125100	Garonne	Mas-D'agenais	1920	1979		1921	
6731400	Gloma	Langnes	1901	1984		1902	
6217100	Guadalquivir	Alcala del Rio	1952	1993			
6227500	Jucar	Masia de Mompo	1925	1981			
6340110	Labe	Neu-Darchau	1965	1988			
6123100	Loire	Montjean	1863	1979			
6970250	Northern Dvina (Severnaya Dvina)	Ust-Pinega	1881	1993		1882	1985
6970650	Pechora	Ust-Tsilma	1932	1984			
6335020	Rhein	Rees	1930	1997			1996
6122100	Seine	Poses	1971	1977			
6609500	Severn	Bewdley	1965	1984	1	1965	1972
					2	1976	1984
6502100	Shannon	Killaloe	1973	1979			
6730500	Tana	Polmak	1912	1987	1	1912	1943
					2	1947	1987
6604610	Тау	Ballathie	1980	1984			
6113050	Tejo	Almourol	1976	1984			
6607700	Thames	Teddington	1965	1984			
6229500	Vaenern-Goeta	Vaenersborg	1807	1992			
6337200	Weser	Intschede	1921	1984			
6608500	Wye	Ddol Farm	1977	1991			1989
Non-Euro	pean Stations						_
1362100	Nile	el Ekhsase	1973	1984			
1835800	Benue	Yola	1960	1989			
1891500	Zambeze	Matundo-Cais	1976	1979			
2181900	Changjiang (Yangtze)	Datong	1923	1986		1947	
2469260	Mekong	Pakse	1980	1991		1982	
2903420	Lena	Kusur	1935	1994		1936	1994
2909150	Yenisei	Igarka	1936	1995		1936	1994
2912600	Ob	Salekhard	1930	1994		1936	1994
3206720	Orinoco	Puente Angostura	1923	1989		1925	
3265300	Paraná	Corrientes	1904	1983		1905	1982
4127800	Mississippi	Vicksburg, Miss.	1965	1983		1969	1982

As some gaps in the records still existed, for the stations with short records or important rivers an estimation of missing values was done. First, an multiple regression with monthly values of the months adjacent to the one whose data were missing was tried. Alternatively, when no significant estimation was possible, an estimation by the mean, as it was observed that only in few cases missing values could be estimated by a regression with statistical significance. Even a enhancement of the desired significance level of 5 % error probability could not substantially change that situation. Therefore, the respective monthly mean value was used as it represents the most central value of the time series.

GRDC number	River	Station	Year	Months	Estimation method
6502100	Shannon	Killaloe	1976	1-12	Mean
2181900	Changjiang (Yangtze)	Datong	1947	1	Regression
			1949	3	Regression
			1949	4-6	Mean
2469260	Mekong	Pakse	1982	1-4	Mean
			1985	4-12	Mean
4127800	Mississippi	Vicksburg, Miss.	1979	10-12	Mean

In short, the following missing data were estimated for the considered periods :

The cited records of these stations were checked for normal distribution, independence and changes in mean, or mean and variance, in special cases also for changes in spectrum, to check for inconsistency and homogeneity within the records. The series consisted of monthly values, which were transformed to annual series by the evaluation programmes, if necessary. So the consistency of the records was retained.

Most of the series of annual values showed normal distribution, with only some exceptions. As a measure of normality, a Kolmogorov-Smirnov test for deviations of normal distribution was applied, rejecting normality only in three cases. Alternatively, a log-normal distribution was found to be the appropriate distribution type. I.e. a logarithmically transformed series is normally distributed.

The following time series, sorted alphabetically by river name, did show deviations from normality:

GRDC number	River	Station	First Year	Last Year	Distribution	Remarks
1835800	Benue	Yola	1960	1980	log-normal, two- parameter	total series
6217100	Guadalquivir	Alcala del Rio	1952	1993	log-normal, two- parameter	extremely low runoff at the end of the series
2909150	Yenisei	Igarka	1936	1994	normal	with 1 % error probability at Kolmogorov- Smirnov test
1891500	Zambeze	Matundo-Cais	1976	1979	log-normal, two- parameter	monthly series

5 Significant Jumps and Trends

Statistical significant jumps within the annual series that have been detected by the JUMP4- and CHPPprogramme are shown here. There were only a few jumps detected by the CHPP-programme, while the JUMP4programme detected more and seems to very sensitive, perhaps sometimes too sensitive. However, for monthly series of individual months, jumps are occasionally observed when no jump in the annual series is observed. These jumps are not shown in this report so far.

Statistical significant trends are tabulated only for annual series of selected rivers, too. For individual months, significant trends are sometimes observed when no trend is significant for the annual series. It was concluded that this was possibly an effect of inner-annual storage by newly built reservoirs, not affecting long-term inter-annual changes. Therefore, as the main focus was on long-term properties, the monthly trends are not shown in this report so far.

In the following table, for respective annual series the statistically significant jumps, trends, the year of completion of dams and its maximum capacity within the considered river basin, taken from data compiled by VOROSMARTY ET AL. 1997a and 1997b are listed:

Jumps and Trends in Annual Series and Respective Dam Completion							
River	Jump	Trends	Dam construction	Dam maximum			
	(JUMP4, CHPP)	(TREND1)	Completion year	capacity			
	Year of	Starting year of	Year	km ³			
	first significant	most significant					
	jump	trend					
	within sequence						
Angerman	1978/79		-	-			
Ebro	1972/73	1970	1966	1.5			
Garonne	1962/63	1953	-	-			
Gloma	1967/68	1976	-	-			
Guadalquivir	1972/73	1986	-	-			
Jucar	1935/36 (CHPP)	1970	1955	1.1			
	1954/55						
	1966/67			:			
	1973/74						
Loire	-	1971	-	-			
Orinoco	-	1981	1957	1.8			
			1967	1.2			
			1982	1.0			
			unknown	0.8			
			unknown	0.9			
			unknown	0.8			
			unknown	3.8			
Paraná	-	1968	1968	3.7			
			1973	21.2			
			1982	29.0			
Tana		1969	-	-			
Thames	-	1977	- <u>-</u>				
Vaenern-Goeta	-	1970	-	-			
Weser	-	1972	-	-			
Yenisei	1970/71	1966	1956	46.0			
	1972/73 (CHPP)		1964	169			
		}	1965	71.3			
			1977	59.3			
			unknown	58.2			

	Trends of Complete Annual Series (Programme TREND1)							
River	Begin	End	Mean	StdDev	Slope	Intercept	R	
ANCEDMAN	year	year 1002	490.29	70.22	5 00	0964.07	0.550	
DENUE	1905	1992	489.38	/9.32	5.23	-9864.27	0.550	
GUANGUA	1900	1989	21.93	8.80	-0.41	826.96	-0.414	
CHANGJIA	1947	1980	28472.18	4461.38	-105.82	236563.94	-0.277	
EBRO	1953	1983	469.53	146.99	-4.60	9529.28	-0.285	
EMS	1980	1984	86.05	17.77	-0.90	1869.85	-0.100	
GARONNE	1921	1979	608.53	182.46	0.05	511.76	0.005	
GLOMA	1902	1984	672.62	108.35	-0.02	703.62	-0.004	
GUADALQ	1952	1993	120.72	112.40	-3.78	7574.14	-0.412	
JUCAR	1925	1981	48.95	16.89	-0.49	997.29	-0.477	
LABE	1965	1988	783.84	197.06	-2.42	5557.37	-0.089	
LENA	1936	1994	16569.46	1985.71	22.55	-27741.27	0.195	
LOIRE	1863	1979	838.09	278.12	1.22	-1507.81	0.149	
MEKONG	1982	1991	9311.88	1025.25	66.59	-122959.90	0.210	
MISSISSIPPI	1969	1982	18002.83	4644.60	-87.67	191185.86	-0.083	
NILE	1973	1984	1251.33	81.61	14.50	-27443.26	0.662	
N_DVINA	1882	1985	3315.40	647.46	-4.65	12313.75	-0.217	
OB	1936	1994	12667.13	1937.17	3.31	6170.29	0.029	
ORINOCO	1925	1989	30641.63	3506.51	31.57	-31139.65	0.170	
PARANA	1905	1982	16357.74	3446.89	2.27	11936.38	0.015	
PECHORA	1932	1984	3404.85	448.29	6.35	-9025.96	0.219	
RHEIN	1930	1996	2280.13	492.79	3.03	-3661.61	0.120	
SEINE	1971	1977	333.60	74.88	17.63	-34464.03	0.556	
SEVERN1	1965	1972	68.16	10.75	-3.76	7467.61	-0.880	
SEVERN2	1976	1984	64.76	10.24	0.79	-1505.49	0.229	
SHANNON	1973	1979	172.68	22.91	5.29	-10271.89	0.545	
TANA1	1912	1943	164.71	31.41	-0.80	1703.31	-0.238	
TANA2	1947	1987	167.08	29.59	0.42	-653.96	0.169	
ТАҮ	1980	1984	180.05	19.32	7.08	-13859.11	0.676	
TEJO	1976	1984	370.85	268.71	-47.40	94222.85	-0.514	
THAMES	1965	1984	81.56	22.22	-1.22	2490.68	-0.333	
VAENERN	1807	1992	534.09	99.12	-0.19	891.92	-0.102	
WESER	1921	1984	316.65	92.12	0.49	-636.95	0.099	
WYE	1977	1989	6.65	0.63	-0.06	125.25	-0.386	
YENISEI	1936	1994	17990.86	1377 18	13 74	-8998.83	0.171	
ZAMBEZE	1976	1979	no data	no data	no data	no data	no data	

For all series, the characteristics of the overall trend of the annual series including the correlation coefficient, irrespective of any statistical significance, are listed in the following table:

The respective trends for the individual months are given in chapter 7.4.

For the first four most significant linear trends of the annual series, the coefficients of the trend equation are listed in the following table, together with the mean and standard deviation of the respective period and the ratio of the slope with the total mean of the series, a measure of the intensity of the trend:

	Statistical Significant Partial Trends (1st - 4th) of Annual Series						
River	Begin	End	Mean	StdDev	Slope	Intercept	Slope/
	year	year					1 otal mean
GARONNE	1952	1979	615.5	146.7	10.54	-20095.8	1.7
GARONNE	1953	1979	616.1	149.4	11.61	-22214.6	1.9
GARONNE	1955	1979	631.4	141.6	10.59	-20197.8	1.7
GARONNE	1956	1979	634.3	143.9	11.21	-21428.1	1.8
GLOMA	1969	1984	614.7	58.1	7.28	-13773.3	1.1
GLOMA	1973	1984	623.4	60.7	10.3	-19762.3	1.5
GLOMA	1975	1984	627.2	66.2	14.95	-28962.3	2.2
GLOMA	1976	1984	629.0	70.0	19.18	-37354.0	2.9
GUADALQ	1984	1993	53.7	27.3	-6.39	12760.0	-5.3
GUADALQ	1985	1993	54.0	28.9	-9.02	17999.9	-7.5
GUADALQ	1986	1993	51.1	29.5	-10.38	20708.8	-8.6
JUCAR	1965	1981	42.8	11.6	-1.60	3201.7	-3.3
JUCAR	1966	1981	42.4	11.8	-1.76	3514.3	-3.6
JUCAR	1969	1981	40.2	10.8	-1.92	3824.7	-3.9
JUCAR	1970	1981	39.4	10.9	-1.99	3978.1	-4.1
LOIRE	1945	1979	816.3	276.0	13.26	-25195.0	1.6
LOIRE	1946	1979	822.0	278.0	13.42	-25519.1	1.6
LOIRE	1953	1979	863.3	248.9	13.11	-24917.1	1.6
LOIRE	1971	1979	902.3	310.2	92.86	-182490.2	11.1
ORINOCO	1979	1989	3226.2	3054.7	-587.23	1197336.1	-1.9
ORINOCO	1980	1989	3229.1	3218.3	-802.51	1624871.8	-2.6
ORINOCO	1981	1989	3207.7	3336.7	-942.44	1902812.6	-3.1
ORINOCO	1982	1989	3144.8	2941.9	-807.18	1634108.9	-2.6
PARANA	1967	1982	1658.2	3776.9	623.24	-1213998.0	3.8
PARANA	1968	1982	1675.9	3840.3	681.01	-1328239.0	4.2
PARANA	1969	1982	1721.4	3540.6	628.10	-1223594.0	3.8
PARANA	1970	1982	1757.4	3408.8	605.36	-1178623.0	3.7
TANA2	1969	1987	165.4	28.9	2.75	-5268.3	1.6
TANA2	1970	1987	166.8	29.1	2.74	-5263.5	1.6
THAMES	1977	1984	79.6	20.3	-6.89	13717.1	-8.4
VAENERN_	1970	1992	498.8	129.3	8.43	-16210.2	1.6
YENISEI	1966	1994	1817.2	1493.4	69.90	-120232.6	0.4

6 Significant Periodicities

Statistically significant periods have been detected for annual series only in exceptional cases listed in the following table. For the River Zambeze, because of the extremely short length of the series, the monthly sequence of values was taken instead of the derived annual series.

	Statistical Significant Periods (Programme CHPP)								
River	Begin year	End year	Type of series	Trans- formation	Period of annual series	Period of monthly sequence	Remarks		
					Years	Months			
GUADALQ	1952	1993	annual	no	-	nil	periodicity of length of series		
GUADALQ	1952	1993	annual	log-normal, 2 parameter	8.2	nil	1/5 of length of series; other periodicity: length of series		
PARANA	1905	1982	annual	no	8.6	nil	1/9 of length of series		
ZAMBEZE	1976	1979	monthly sequence	no	nil	-	no periodicity		
ZAMBEZE	1976	1979	monthly sequence	log-normal, 2 parameter	nil	7.8	1/6 of length of series		

7 Basic Descriptive Annual and Monthly Statistical Properties

7.1 Sample Interpretation

7.1.1 Example for Interpretation of Data -Overview of Annual Descriptive and Monthly Autocorrelation Statistics

While the selected European rivers have quite often small mean discharge in comparison to big streams like the Mississippi, Orinoco, Changjiang (Yangtze), and Mekong, some rivers discharging into the Arctic Ocean like the Rivers Lena, Ob, and Yenisei, have substantially comparable mean discharge amount.

Similarly, the River Nile has roughly half the discharge of the River Rhine, with only 6.5 % variation coefficient also the most constant flow as compared to a value of 21.6 % for the latter. But, besides this anomaly of an epirheic stream with its water sources in an more humid region and crossing an arid region only later on, it may be observed that the more arid the climate at the river basin, the more elevated the discharge variation is, taking 30 % coefficient of variation as a threshold: Rivers Ebro, Guadalquivir, Jucar and Tejo (72.5 %), River Benue, a tributary of the River Niger, in Africa (40.1 %).

The maximum discharge value augments with the mean discharge. Although, the frequency distribution is different for the rivers: Some rivers show nearly symmetrical normal distribution as observed by the coefficient of skewness - River Labe 0.054 or River Angerman 0.09, others have extreme maximum values - Rivers Loire (coefficient of skewness 0.725) or Tana (0.983 for 1912-1943).

As for the kurtosis, most streams show small deviations of the bell-shaped normal distribution with values of 2.5 up to 3.5. Some have extreme numbers of values close to the mean together with relatively few extreme values. This feature seems to be more prominent with the rivers in humid regions:

River	CF Kurtosis	Remarks
Ems	7.3	short period 1980-1984.
Tana	5.8	

Considering the annual series' autocorrelation, the situation is quite indifferent:

For long, homogeneous series with no trends, the AC(1) should be around 0 - River Pechora 0.04 (1932-1984). Positive trends show positive AC(1), negative trends. Opposite trends occur at the same station: River Severn 1965-1972: +0.67, 1976-1984: -0.33.

With monthly series, the river regime represented by AC(1), AC(6), and AC(12) is different from river to river: Often AC(1) and AC(6) have opposite trends, AC(1) being positive and AC(6) being negative, reflecting the seasonal river discharge and runoff regime. Nevertheless, some deviations exist:

River	AC(1)	AC(6)	Remarks
Angerman	0.50	0.16	very low correlation
Rhine	0.36	0.03	no inter-seasonal correlation
Vaenern-Goeta	0.75	0.35	strongly correlated

Even opposite trends occur for AC(1) and AC(12), showing dependency on the former year's value being stronger than on the value of the preceding month:

River	AC(1)	AC(12)	Remarks
Yenisei	0.33	0.91	arctic river
Lena	0.41	0.93	arctic river

Hurst's coefficient, being theoretically 0.5 for long, independent series, is sometimes more or less about the theoretical value of 0.5, while mostly being within the empirical range stated by literature of 0.73 \pm 0.03 (MAIDMENT 1992).

The adjusted range, a measure for monthly variability and storage needs, normally increases with mean discharge:

River	mean discharge	adjusted range
Ems	86	539
Rhein	2280	60500
Mekong	9310	74600

Nevertheless, positive deviations exist:

River	mean discharge	adjusted range
Parana	16400	571000
Lena	16600	307000
Mississippi	18000	279000

These three rivers show extreme differences of monthly values (see section with monthly descriptive statistics).

7.1.2 Example for Interpretation of Data -Monthly Descriptive Statistics

For the first set of results together with the overview of the annual statistics, some conclusions are drawn to provide assistance how the statistical results of the data may be interpreted.

Basic Descriptive Statistics													
River:					A	NGERMA	N						
Station:		Solleftea											
GRDC#:	6233650												
Time	Begin End # Mean Min Max SE Std CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1965	1992	28	487	301	612	14	76	0.155	-0.510	3.176		
FEB	1965	1992	28	502	325	617	15	79	0.157	-0.680	3.048		
MAR	1965	1992	28	462	247	642	17	88	0.191	-0.363	3.716		
APR	1965	1992	28	446	235	767	26	138	0.310	0.488	2.999		
MAY	1965	1992	28	703	412	1097	35	183	0.261	0.432	2.688		
JUN	1965	1992	28	572	337	1063	32	171	0.299	1.149	4.651		
JUL	1965	1992	28	437	204	951	33	173	0.396	1.147	4.628		
AUG	1965	1992	28	421	188	894	36	192	0.458	1.107	3.806		
SEP	1965	1992	28	416	207	1001	32	171	0.411	1.834	7.394		
OCT	1965	1992	28	458	223	881	27	143	0.311	1.238	5.076		
NOV	1965	1992	28	498	318	701	16	86	0.174	0.177	3.558		
DEC	1965	1992	28	472	321	572	12	63	0.133	-1.047	4.394		
MTHS	1965	1992	28	489	188	1097	9	156	0.318	1.015	4.865		
ANNL	1965	1992	28	489	338	632	15	79	0.162	0.090	2.629		

The River Angerman, with a mean discharge of 489 m³/s (annual maximum 632 m³/s and annual minimum 338 m³/s) for about 31000 km² basin size has a fairly high mean discharge per unit area of 16.0 l/(s*km²). Mean monthly discharge maximum is observed in May (703 m³/s) and mean monthly minimum in August/September (421/416 m³/s), while the absolute maximum and minimum discharges occur in May (1097 m³/s) and August (188 m³/s), respectively.

For the annual and the consecutive monthly series the mean discharges are, of course, identical. However, the range of the values (Maximum - Minimum) of the monthly series is greater by a factor of about 3 (900 vs. 300 m^3 /s). That means, that inner-annual variations are greater than inter-annual variations in discharge and runoff, respectively.

The standard error of the mean for monthly series is smaller than that one for annual series, meaning a better confidence for the expected mean of sampled values for the monthly series.

However, the standard deviation and the respective coefficient of variation of the monthly values is higher than

for the annual values, indicating that monthly values are substantially higher variable than annual values and thus describing the effect of the different range relative to the mean. The coefficient of variation shows small up to relatively strong variations of the discharge for the winter period November-March (< 0.2) and the summer period April - October (≥ 0.3). That means, a relatively high inter-annual variation of monthly discharge in summer is present.

The extreme discharges in summer are relatively high with respect to the mean, as the skewness coefficient is positive, even extremely positive for the period of June - October (September. +1.8), indicating relatively extremely high values. The different values of skewness and kurtosis of the different time intervals occurring are sometimes really contradictory.

Positive skew means that some extremely high values are present, while negative skew means that some extremely low values are observed:

June: + 1.15

December: - 1.05.

For the kurtosis, with a value of 3.0 for standard normal distribution shape, the relations are more equalised. In September many values occurred within a relatively small interval, while in May the distribution was broader and equal to that one of the annual values, near to standard normal conditions:

+	7.39	
+	2.67	
+	2.63	
	+ + +	+ 7.39 + 2.67 + 2.63

7.2 Overview of Annual Descriptive and Monthly Autocorrelation Statistics

The evaluation by the TS-programme and the CHPP-programme showed the following basic characteristics of the annual time series, recalculated from the monthly data, data units are m³/s. For the River Zambeze, because of the short length of the series, the monthly sequence of values was used instead of the derived annual series

River /	Begin	End	#	Mean	Min	Max	SE	Std	CF	CF	CF	AC(1)
Time Series	year	year	year				Mean	Dev	Var	Skw	Kur	
ANGERMAN	1965	1992	28	489	338	632	15	79	0.162	0.090	2.629	0.329
BENUE	1960	1989	30	22	9	46	2	9	0.401	1.066	4.517	0.115
CHANGJIA	1947	1986	40	28472	21377	42933	705	4461	0.157	$0.97\bar{7}$	4.658	0.078
EBRO	1953	1983	31	470	244	888	26	147	0.313	0.640	3.801	0.417
EMS	1980	1984	5	86	70	114	8	18	0.207	1.201	7.298	-0.573
GARONNE	1921	1979	59	609	170	1022	24	182	0.300	-0.091	2.466	0.364
GLOMA	1902	1984	83	673	479	979	12	108	0.161	0.397	2.858	0.136
GUADALQ	1952	1993	42	121	10	526	17	112	0.931	1.902	7.005	0.124
JUCAR	1925	1981	57	49	21	111	2	17	0.345	1.195	6.089	0.458
LABE	1965	1988	24	784	448	1132	40	197	0.251	0.054	2.381	0.549
LENA	1936	1994	59	16569	12478	22626	259	1986	0.120	0.525	3.426	0.257
LOIRE	1863	1979	117	838	282	1967	26	278	0.332	0.725	4.395	0.216
MEKONG	1982	1991	10	9312	7596	11126	324	1025	0.110	0.111	4.056	-0.189
MISSISSIPPI	1969	1982	14	18003	12311	27807	1241	4645	0.258	0.653	3.343	0.285
NILE	1973	1984	12	1251	1131	1390	24	82	0.065	0.254	2.716	0.309
N_DVINA	1882	1985	104	3315	1785	5245	63	647	0.195	0.437	3.427	0.412
OB	1936	1994	59	12667	8791	17812	252	1937	0.153	0.278	2.856	0.408
ORINOCO	1925	1989	65	30642	21245	37109	435	3507	0.114	-0.165	2.820	0.212
PARANA	1905	1982	78	16358	9413	25583	390	3447	0.211	0.347	2.846	0.283
PECHORA	1932	1984	53	3405	2576	4346	62	448	0.132	-0.033	2.551	0.041
RHEIN	1930	1996	67	2280	1246	3280	60	493	0.216	-0.140	2.433	0.211
SEINE	1971	1977	7	334	244	431	28	75	0.224	0.251	2.925	-0.376
SEVERN1	1965	1972	8	68	48	80	4	11	0.158	-0.870	4.563	0.666
SEVERN2	1976	1984	9	65	43	75	3	10	0.158	-1.149	5.152	-0.326
SHANNON	1973	1979	7	173	138	205	9	23	0.133	-0.154	4.283	-0.488
TANA1	1912	1943	32	165	102	268	6	31	0.191	0.983	5.835	-0.005
TANA2	1947	1987	41	167	106	235	5	30	0.177	-0.115	2.906	0.062
TAY	1980	1984	5	180	157	208	9	19	0.107	0.430	6.711	0.048
TEJO	1976	1984	9	371	90	884	90	269	0.725	1.016	4.007	0.073
THAMES	1965	1984	20	82	41	112	5	22	0.272	-0.405	2.523	0.487
VAENERN_	1807	1992	186	534	225	768	7	99	0.186	-0.102	2.670	0.268
WESER	1921	1984	64	317	150	532	12	92	0.291	0.472	2.875	-0.096
WYE	1977	1989	13	7	5	8	0	1	0.095	-0.214	3.428	0.695
YENISEI	1936	1994	59	17991	15543	20966	179	1377	0.077	0.210	2.294	0.105
ZAMBEZE	1976	1979	4	3337	540	12382	353	2448	0.733	1.816	6.850	no data

Explanation of abbreviations:

# year:	Number of years
Mean:	Mean of annual series
Min:	Minimum annual value
Max:	Maximum annual value
SEMean:	Standard error of the annual mean
StdDev:	Standard deviation of annual values
CFVar:	Coefficient of variation
CFSkw:	Coefficient of skewness
CFKur:	Coefficient of kurtosis
AC(1):	Autocorrelation coefficient of annual series with lag $M = 1$

River	Adj.	Resc	CF	AC	AC	AC									
	Range	A.R.	Hrst	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
ANGERMAN	9093	58.34	0.7936	0.502	0.167	0.133	0.079	0.100	0.162	0.132	0.093	0.050	0.023	0.160	0.319
BENUE	914	28.43	0.6446	0.536	0.226	-0.078	-0.240	-0.324	-0.339	-0.328	-0.247	-0.115	0.168	0.444	0.603
CHANGJIA	504832	33.71	0.6419	0.802	0.470	0.061	-0.351	-0.634	-0.734	-0.635	-0.362	0.018	0.396	0.666	0.777
EBRO	15664	43.89	0.7237	0.640	0.340	0.120	-0.071	-0.243	-0.319	-0.239	-0.076	0.113	0.254	0.367	0.426
EMS	539	10.04	0.6782	0.496	0.238	-0.075	-0.187	-0.377	-0.468	-0.472	-0.209	0.011			
GARONNE	40083	83.58	0.7541	_0.611	0.328	0.065	-0.143	-0.280	-0.334	-0.254	-0.101	0.091	0.257	0.386	0.432
GLOMA	_ 25701	47.56	0.6218	0.592	0.171	-0.100	-0.290	-0.400	-0.429	-0.386	-0.278	-0.114	0.146	0.515	0.747
GUADALQ	16409	73.93	0.7782	0.576	0.330	0.139	0.000	-0.072	-0.089	-0.060	0.021	0.114	0.293	0.332	0.325
JUCAR	3317	145.0	0.8530	0.760	0.577	0.446	0.337	0.254	0.229	0.249	0.299	0.359	0.416	0.442	0.441
LABE	15517	37.24	0.7279	0.699	0.407	0.147	-0.046	-0.133	-0.170	-0.126	-0.013	0.122	0.276	0.363	0.431
LENA	307118	14.15	0.4514	0.407	0.099	-0.074	-0.272	-0.405	-0.415	-0.397	-0.263	-0.066	0.102	0.400	0.927
LOIRE	66374	94.87	0.6946	0.678	0.378	0.125	-0.106	-0.287	-0.343	-0.304	-0.169	0.034	0.236	0.353	0.399
MEKONG	74606	8.60	0.5256	0.785	0.329	-0.137	-0.443	-0.591	-0.630	-0.580	-0.418	-0.121	0.295	0.676	0.839
MISSISSIPPI	278680	29.47	0.7636	0.701	0.426	0.201	-0.006	-0.163	-0.236	-0.199	-0.023	0.114	0.236	0.389	0.468
NILE	4894	19.86	0.6988	0.622	0.131	-0.206	-0.319	-0.194	-0.086	-0.139	-0.257	-0.180	0.085	0.504	0.774
N_DVINA	172681	44.44	0.5895	0.313	-0.110	-0.188	-0.166	-0.116	-0.096	-0.121	-0.175	-0.201	-0.104	0.288	0.805
OB	261961	24.17	0.5427	0.724	0.247	-0.147	-0.375	-0.490	-0.521	-0.483	-0.362	-0.132	0.235	0.664	0.884
ORINOCO	512851	24.42	0.5356	0.843	0.458	-0.017	-0.448	-0.739	-0.841	-0.739	-0.453	-0.033	0.426	0.788	0.926
PARANA	570856	98.15	0.7460	0.762	0.507	0.314	0.162	0.027	-0.062	-0.035	0.051	0.126	0.233	0.334	0.364
PECHORA	63554	14.48	0.4639	0.359	-0.096	-0.164	-0.169	-0.234	-0.277	-0.227	-0.161	-0.162	-0.074	0.399	0.757
RHEIN	60510	62.38	0.6893	0.559	0.336	0.182	0.081	0.029	0.024	0.040	0.063	0.073	0.122	0.180	0.184
SEINE	2009	12.52	0.6763	0.671	0.423	0.154	-0.148	-0.358	-0.419	-0.393	-0.265	-0.013	0.220	0.263	0.379
SEVERN1	710	14.85	0.6970	0.319	0.290	0.037	-0.212	-0.347	-0.407	-0.359	-0.146	-0.023	0.231	0.434	0.436
SEVERN2	526	10.71	0.5943	0.582	0.256	-0.015	-0.291	-0.497	-0.630	-0.521	-0.290	0.058	0.307	0.400	0.521
SHANNON	1063	9.05	0.5894	0.692	0.301	-0.037	-0.353	-0.565	-0.662	-0.591	-0.353	-0.024	0.259	0.566	0.687
TANA1	3196	16.52	0.5334	0.272	-0.055	-0.095	-0.147	-0.203	-0.223	-0.203	-0.151	-0.111	-0.070	0.296	0.681
TANA2	2976	16.11	0.5048	0.342	-0.040	-0.117	-0.165	-0.234	-0.279	-0.229	-0.152	-0.104	-0.021	0.368	0.687
TAY	938	8.49	0.6290	0.584	0.300	-0.060	-0.288	-0.493	-0.537	-0.414	-0.247	-0.009			
TEJO	14084	26.52	0.8217	0.617	0.407	0.194	0.007	-0.065	-0.077	-0.084	-0.028	0.038	0.160	0.299	0.313
THAMES	1439	26.24	0.6825	0.714	0.470	0.132	-0.131	-0.310	-0.397	-0.349	-0.183	0.003	0.189	0.304	0.367
VAENERN_	25732	196.1	0.7522	0.887	0.738	0.600	0.488	0.403	0.348	0.326	0.329	0.354	0.388	0.412	0.403
WESER	10360	52.72	0.6663	0.596	0.361	0.159	0.011	-0.125	-0.173	-0.146	-0.047	0.078	0.239	0.346	0.357
WYE	68	12.84	0.5859	0.418	0.148	-0.071	-0.264	-0.436	-0.518	-0.361	-0.173	0.055	0.229	0.356	0.437
YENISEI	282067	13.81	0.4473	0.331	-0.030	-0.110	-0.188	-0.307	-0.347	-0.298	-0.179	-0.102	-0.023	0.337	0.906
ZAMBEZE	29752	12.16	0.7860												

The following characteristics of the monthly series were calculated by the TS-programme:

Explanation of abbreviations:

River:	River / Time Series
Adj.Range:	Adjusted Range
Res.A.R.:	Rescaled Adjusted Range
CFHrst:	Hurst's coefficient
AC(i):	Autocorrelation coefficient of monthly series with lag $i = 1,, 12$

River	AC	AC	AC	AC	AC	AC	AC	AC	AC	AC	AC	AC
	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)
ANGERMAN	0.105	-0.050	-0.019	-0.009	0.055	0.120	0.071	0.042	0.019	0.036	0.133	0.297
BENUE	0.388	0.120	-0.126	-0.250	-0.307	-0.319	-0.303	-0.237	-0.102	0.170	0.420	0.638
CHANGJIA	0.659	0.375	-0.008	-0.387	-0.652	-0.745	-0.630	-0.352	0.016	0.385	0.648	0.741
EBRO	0.357	0.204	0.032	-0.117	-0.262	-0.336	-0.286	-0.141	-0.010	0.133	0.287	0.362
EMS												
GARONNE	0.331	0.195	0.001	-0.157	-0.286	-0.323	-0.279	-0.131	0.030	0.140	0.268	0.341
GLOMA	0.514	0.140	-0.128	-0.299	-0.388	-0.429	-0.382	-0.282	-0.123	0.142	0.501	0.726
GUADALQ	0.305	0.226	0.100	-0.012	-0.078	-0.108	-0.090	-0.038	0.060	0.141	0.277	0.289
JUCAR	0.394	0.316	0.246	0.181	0.127	0.104	0.105	0.145	0.192	0.222	0.227	0.229
LABE	0.372	0.241	0.072	-0.091	-0.199	-0.204	-0.152	-0.070	0.015	0.118	0.194	0.239
LENA	0.387	0.092	-0.075	-0.271	-0.400	-0.408	-0.392	-0.263	-0.068	0.095	0.385	0.909
LOIRE	0.345	0.205	0.009	-0.184	-0.328	-0.386	-0.338	-0.199	-0.003	0.189	0.325	0.405
MEKONG	0.658	0.273	-0.124	-0.392	-0.519	-0.552	-0.504					
MISSISSIPPI	0.404	0.207	0.050	-0.149	-0.311	-0.370	-0.364	-0.286	-0.106	0.036	0.199	0.270
NILE	0.486	0.045	-0.233	-0.319	-0.198	-0.107	-0.170	-0.280	-0.226	0.013	0.397	
N_DVINA	0.278	-0.107	-0.196	-0.174	-0.119	-0.101	-0.131	-0.180	-0.207	-0.116	0.284	0.814
OB	0.656	0.223	-0.154	-0.377	-0.489	-0.520	-0.483	-0.363	-0.134	0.226	0.637	0.841
ORINOCO	0.784	0.422	-0.034	-0.450	-0.732	-0.831	-0.731	-0.451	-0.037	0.414	0.769	0.906
PARANA	0.286	0.150	0.023	-0.092	-0.198	-0.242	-0.193	-0.112	-0.024	0.066	0.164	0.217
PECHORA	0.381	-0.078	-0.162	-0.162	-0.225	-0.279	-0.228	-0.153	-0.157	-0.079	0.376	0.767
RHEIN	0.159	0.086	0.030	-0.029	-0.064	-0.084	-0.124	-0.116	-0.066	0.013	0.085	0.126
SEINE	0.261				L							
SEVERN1	0.358	0.174	0.035									
SEVERN2	0.479	0.236	-0.003	-0.286	-0.486							
SHANNON	0.562											-
TANA1	0.279	-0.049	-0.116	-0.146	-0.195	-0.222	-0.195	-0.151	-0.116	-0.053	0.317	0.632
TANA2	0.324	-0.048	-0.133	-0.167	-0.232	-0.274	-0.224	-0.149	-0.114	-0.046	0.336	0.609
TAY												
TEJO	0.318	0.245	0.119	0.041	-0.059							
THAMES	0.320	0.172	-0.017	-0.257	-0,415	-0.472	-0.415	-0.303	-0.087	0.148	0.364	0.481
VAENERN_	0.335	0.234	0.128	0.051	-0.002	-0.037	-0.042	-0.009	0.037	0.095	0.142	0.158
WESER	0.298	0.177	0.021	-0.139	-0.253	-0.275	-0.256	-0.179	-0.064	0.119	0.240	0.271
WYE	0.344	0.204	0.018	-0.232	-0.414	-0.427	-0.336	-0.243	0.014	0.277	0.371	0.469
YENISEI	0.329	-0.029	-0.109	-0.186	-0.300	-0.341	-0.292	-0.178	-0.101	-0.027	0.330	0.901
ZAMBEZE												

The following autocorrelation coefficients for lags i = 13, ..., 24 of the monthly series were calculated by the TS-programme:

Explanation of abbreviations:

River: River / Time Series

AC(i): Autocorrelation coefficient of monthly series with lag i = 13, ..., 24

7.3 Monthly Descriptive Statistics

Basic Descriptive Statistics												
River:					Al	NGERMA	N					
Station:	Solleftea											
GRDC#:	6233650											
Time	Begin	End	#	Mean	Min	Max	SE	Std	CF	CF	CF	
interval	year	year	year				Mean	Dev	Var	Skw	Kur	
JAN	1965	1992	28	487	301	612	14	76	0.155	-0.510	3.176	
FEB	1965	1992	28	502	325	617	15	79	0.157	-0.680	3.048	
MAR	1965	1992	28	462	247	642	17	88	0.191	-0.363	3.716	
APR	1965	1992	28	446	235	767	26	138	0.310	0.488	2.999	
MAY	1965	1992	28	703	412	1097	35	183	0.261	0.432	2.688	
JUN	1965	1992	28	572	337	1063	32	171	0.299	1.149	4.651	
JUL	1965	1992	28	437	204	951	33	173	0.396	1.147	4.628	
AUG	1965	1992	28	421	188	894	36	192	0.458	1.107	3.806	
SEP	1965	1992	28	416	207	1001	32	171	0.411	1.834	7.394	
OCT	1965	1992	28	458	223	881	27	143	0.311	1.238	5.076	
NOV	1965	1992	28	498	318	701	16	86	0.174	0.177	3.558	
DEC	1965	1992	28	472	321	572	12	63	0.133	-1.047	4.394	
MTHS	1965	1992	28	489	188	1097	9	156	0.318	1.015	4.865	
ANNL	1965	1992	28	489	338	632	15	79	0.162	0.090	2.629	

7.3.1 Europe (GRDC Region #6)

The River Angerman, with its basin of about 31000 km² size, shows medium-sized mean discharge of 489 m³/s (annual maximum 632 m³/s, annual minimum 338 m³/s) and elevated mean discharge per unit area of 16.0 $l/(s*km^2)$.

Mean monthly maximum occurs in May (703 m³/s), mean minimum in August/September (416 m³/s), the extremes in May (1097 m³/s) and August (188 m³/s).

Inter-annual variations are small and the annual series shows normal frequency, slightly platykurtic distribution (coefficient of skewness: 0.1, coefficient of kurtosis: 2.6).

The monthly series' variability is high in summer and small in winter.

For further interpretation of the values, see detailed interpretation on page 26.
	Basic Descriptive Statistics													
River:				·· · · · · · · · · · · · · · · · · ·		EBRO								
Station:	_					Tortosa								
GRDC#:	6226800													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1953	1983	31	690	232	1983	68	378	0.548	1.449	6.327			
FEB	1953	1983	31	755	266	1801	77	430	0.570	1.060	3.318			
MAR	1953	1983	31	720	201	1407	57	320	0.444	0.361	2.896			
APR	1953	1983	31	610	114	1357	57	316	0.518	0.391	2.765			
MAY	1953	1983	31	502	43	1571	55	308	0.613	1.440	6.636			
JUN	1953	1983	31	482	111	1115	48	269	0.558	0.562	2.942			
JUL	1953	1983	31	203	20	372	16	91	0.446	0.371	2.655			
AUG	1953	1983	31	130	23	461	16	88	0.673	2.000	8.925			
SEP	1953	1983	31	193	49	488	20	110	0.571	1.290	4.595			
OCT	1953	1983	31	307	46	1254	42	235	0.767	2.440	10.956			
NOV	1953	1983	31	466	73	1216	57	316	0.679	1.103	3.319			
DEC	1953	1983	31	577	161	2171	73	404	0.699	2.255	10.099			
MTHS	1953	1983	31	470	20	2171	19	357	0.760	1.398	5.423			
ANNL	1953	1983	31	470	244	888	26	147	0.313	0.640	3.801			

The River Ebro, with a basin size of about 84000 km², has a mean discharge of 470 m³/s (annual maximum 888 m³/s, minimum 244 m³/s) and a small mean discharge per unit area of $5.6 l/(s*km^2)$.

Mean monthly maximum occurs in February (690 m³/s), the minimum in August (130 m³/s), while the absolute extremes occur in December (2171 m³/s) and July/August (20/23 m³/s), respectively. This discharge regime is similar to that of River Garonne, to the North of the Pyrenees mountain range.

The annual series shows medium inter-annual variability, combined with small right-sided skew and a slightly leptokurtic distribution.

The monthly variability, however, is strong and culminating at a variation coefficient of 76.7 % in October while the smallest variability is observed in March and July, attaining variation coefficients of about 44.5 %.

The skewness is strongly right-sided as on the River Garonne, now in August, October and December combined with extraordinary values of the coefficient of kurtosis. I.e., during these months, relatively high floods may occur. In January and May the skew and kurtosis are strong, too, but markedly minor to those of the months mentioned before.

	Basic Descriptive Statistics													
River:		_	_			EMS								
Station:						Versen								
GRDC#:	633810													
Time	Begin	BeginEnd#MeanMinMaxSEStdCFCF												
interval	year	year	year				Mean	Dev	Var_	Skw	Kur			
JAN	1980	1984	5	151	96	212	20	45	0.299	0.319	6.002			
FEB	1980	1984	5	154	121	182	11	26	0.166	-0.138	5.210			
MAR	1980	1984	5	133	71	258	34	75	0.564	1.570	8.852			
APR	1980	1984	5	86	60	130	13	28	0.330	1.023	7.243			
MAY	1980	1984	5	72	38	124	_15	35	0.480	0.901	6.480			
JUN	1980	1984	5	52	34	82	8	19	0.364	1.339	8.098			
JUL	1980	1984	5	68	30	135	_21	47	0.693	0.844	5.277			
AUG	1980	1984	5	33	21	51	6	13	0.400	0.585	4.959			
SEP	1980	1984	5	34	19	44	5	12	0.361	-0.622	4.082			
OCT	1980	1984	5	58	25	119	17	39	0.667	1.285	7.396			
NOV	1980	1984	5	78	34	119	16	36	0.465	-0.151	4.743			
DEC	1980	1984	5	113	79	181	18	41	0.359	1.546	8.607			
MTHS	1980	1984	5	86	19	258	7	54	0.624	0.946	3.719			
ANNL	1980	1984	5	86	70	114	8	18	0.207	1.201	7.298			

The River Ems, with its mouth into the North Sea, has only small discharge with a mean of 86 m³/s (annual maximum 114 m³/s, minimum 70 m³/s), corresponding to its basin size of only about 8000 km² size, and a mean discharge per unit area of 10.3 l/(s*km²).

A marked peak in discharge in winter occurs, especially in January/February (151/154 m³/s), and a mean minimum is observed in August/September (33/34 m³/s), while the absolute extremes are observed in March (258 m³/s) and August/September (21/19 m³/s).

The annual series shows small inter-annual variability, with strong right-sided skew and leptokurtic distribution (coefficient of skewness: 1.2, coefficient of kurtosis: 7.3).

The monthly series, however, shows mostly fairly high variability, especially in March, July and October.

It has marked right-sided skew in some months, corresponding to the high variation coefficients with the exception of December, although also negative values of the skewness coefficient are observed.

The short period of record of only 5 years is limiting the reliability of the figures.

	Basic Descriptive Statistics													
River:					6	GARONNI	E							
Station:					Ma	as-D'agena	ais							
GRDC#:	6125100													
Time	Begin	BeginEnd#MeanMinMaxSEStdCFCF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1921	1979	59	878	144	2684	65	497	0.567	1.244	5.237			
FEB	1921	1979	59	1010	96	2279	68	526	0.521	0.527	2.652			
MAR	1921	1979	59	907	166	2400	69	528	0.582	1.010	3.552			
APR	1921	1979	59	856	141	2453	56	429	0.501	0.845	4.848			
MAY	1921	1979	59	804	231	1844	49	379	0.471	0.712	3.215			
JUN	1921	1979	59	568	190	1337	37	282	0.497	1.013	3.686			
JUL	1921	1979	59	295	72	1222	24	182	0.619	3.160	16.282			
AUG	1921	1979	59	185	42	665	13	99	0.533	2.393	12.274			
SEP	1921	1979	59	204	52	655	15	119	0.582	1.613	6.365			
OCT	1921	1979	59	289	60	855	24	188	0.649	1.348	4.630			
NOV	1921	1979	59	480	98	1200	35	271	0.565	0.883	3.527			
DEC	1921	1979	59	826	103	2910	80	615	0.744	1.498	5.348			
MTHS	1921	1979	59	609	42	2910	18	480	0.788	1.438	5.349			
ANNL	1921	1979	59	609	170	1022	24	182	0.300	-0.091	2.466			

The River Garonne, with a medium-sized basin of about 52000 km², by a mean discharge of 609 m³/s (annual maximum 1022 m³/s, minimum 170 m³/s) and a mean discharge per unit area of 11.7 l/(s*km²), has somewhat higher discharge than River Angerman with 31000 km² basin size.

Mean monthly maximum occurs in February (1010 m³/s), the minimum in August (183 m³/s), while the absolute extremes occur in December (2910 m³/s) and August (42 m³/s), respectively.

The annual series shows small to medium inter-annual variability, with no skew and a slightly platykurtic distribution.

The monthly variability, however, is strong and generally higher than at River Angerman, culminating at a variation coefficient of 74.4 % in December.

Furthermore, the skewness is strongly right-sided, especially in the summer and autumn months of June, July and September, combined with extraordinary values of the coefficient of kurtosis. I.e., during these months, relatively high floods may occur.

	Basic Descriptive Statistics													
River:						GLOMA								
Station:						Langnes								
GRDC#:	6731400													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1902	1984	83	224	70	570	12	111	0.497	1.325	4.223			
FEB	1902	1984	83	186	73	555	11	101	0.545	1.603	5.116			
MAR	1902	1984	83	197	82	454	11	99	0.505	0.986	2.837			
APR	1902	1984	83	491	146	1182	24	220	0.448	1.100	4.769			
MAY	1902	1984	83	1574	720	2874	55	502	0.319	0.582	2.923			
JUN	1902	1984	83	1490	734	3010	46	420	0.282	0.861	4.198			
JUL	1902	1984	83	1044	458	2436	38	343	0.329	1.438	6.352			
AUG	1902	1984	83	818	348	1813	36	327	0.400	0.881	3.744			
SEP	1902	1984	83	683	233	1682	36	327	0.480	0.949	3.410			
OCT	1902	1984	83	612	212	1425	31	279	0.455	0.793	3.268			
NOV	1902	1984	83	456	126	1169	23	211	0.463	0.937	4.248			
DEC	1902	1984	83	298	96	763	16	145	0.485	1.083	4.225			
MTHS	1902	1984	83	673	70	3010	17	540	0.803	1.265	4.347			
ANNL	1902	1984	83	673	479	979	12	108	0.161	0.397	2.858			

The River Gloma, with a basin of about 40000 km² size, has a mean discharge of 673 m³/s (annual maximum 979 m³/s, minimum 479 m³/s) and a fairly high mean discharge per unit area of 16.6 l/(s*km²). Extreme monthly discharges are of similar order of magnitude but different timing than those of the River Garonne.

Mean monthly maximum is observed in June (1490 m³/s), the minimum in February (186 m³/s) (Garonne: February and August), while the absolute extremes occur in June (3010 m³/s) and January (70 m³/s), respectively. This may be possible outcome of snow accumulation in winter and snow melt in spring.

Annual series shows slightly right-sided skewed, distribution with normal kurtosis while the inter-annual variability is small.

The monthly series' variability is small up to medium sized, culminating in May.

The respective skewness is strongly right-sided, especially in February and July, in conjunction with high kurtosis. I.e., during these months, relatively high floods may occur.

	Basic Descriptive Statistics													
River:					GUA	DALQUI	VIR							
Station:					A	cala del R	io							
GRDC#:	6217100													
Time	Begin	egin End # Mean Min Max SE Std CF CF CF												
interval	year	year year year Mean Dev Var Skw Kur												
JAN	1952	1993	42	254	7	1640	57	368	1.450	2.621	10.140			
FEB	1952	1993	42	286	8	1415	59	379	1.329	1.939	5.979			
MAR	1952	1993	42	250	3	1298	52	334	1.336	1.985	6.222			
APR	1952	1993	42	139	5	602	25	162	1.166	1.550	4.393			
MAY	1952	1993	42	74	5	331	11	74	1.007	1.759	5.872			
JUN	1952	1993	42	46	2	179	5	34	0.749	2.163	8.856			
JUL	1952	1993	42	32	2	82	2	14	0.439	0.919	5.896			
AUG	1952	1993	42	33	1	64	2	13	0.379	-0.087	3.899			
SEP	1952	1993	42	33	3	139	3	22	0.658	2.741	15.278			
OCT	1952	1993	42	45	0	314	8	54	1.203	3.398	17.529			
NOV	1952	1993	42	85	1	497	17	107	1.270	2.797	11.231			
DEC	1952	1993	42	172	1	1198	- 38	244	1.420	2.448	9.909			
MTHS	1952	1993	42	121	0	1640	10	222	1.838	3.919	20.601			
ANNL	1952	1993	42	121	10	526	17	112	0.931	1.902	7.005			

The River Guadalquivir, with a basin size of roughly 47000 km², has a mean discharge of 121 m³/s (annual maximum 526 m³/s, minimum 10 m³/s) and a very small mean discharge per unit area of only 2.5 $l/(s*km^2)$.

Mean monthly maximum occurs in February (286 m³/s), the minimum from July to September (32-33 m³/s), while the absolute extremes are observed in January (1640 m³/s) and October (0 m³/s), respectively. The maximum is timed similar to that of River Ebro to the South of the Pyrenees mountain range, while the absolute minimum discharge is extraordinarily low, possibly due to abstractions for irrigation within the catchment, and not constrained to October, but with equally low values up to 3 m³/s also present throughout the year besides January, February, April, and May.

The annual series shows strong inter-annual variability, combined with very strongly right-sided skew and a equally strongly leptokurtic distribution.

The monthly variability, however, is even stronger and culminating at a variation coefficient of 142-145 % in December and January while the smallest variability is observed in August with a variation coefficient of 37.9 %, when also no skew and only moderately high right-sided kurtosis are observed.

The skewness is strongly right-sided as on the River Ebro, now in June, and the period from September to January, each time combined with extraordinary values of the coefficient of kurtosis. I.e., during these months, relatively high floods may occur. In the rest of the year, besides August, the skew and kurtosis are strong, too, but markedly minor to those of the months mentioned before.

	Basic Descriptive Statistics													
River:						JUCAR								
Station:					Mas	sia de Moi	npo							
GRDC#:		6227500												
Time	Begin	egin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1925	1981	57	54	20	141	3	26	0.482	1.478	5.690			
FEB	1925	1981	57	61	21	172	4	34	0.556	1.724	6.102			
MAR	1925	1981	57	61	20	185	5	35	0.566	1.701	6.428			
APR	1925	1981	57	53	17	138	3	24	0.455	1.487	5.795			
MAY	1925	1981	57	52	21	126	3	22	0.424	1.757	6.840			
JUN	1925	1981	57	48	23	108	2	15	0.321	1.253	6.066			
JUL	1925	1981	57	43	21	82	1	10	0.230	0.776	7.011			
AUG	1925	1981	57	40	17	65	1	9	0.215	-0.395	4.997			
SEP	1925	1981	57	41	14	108	2	15	0.366	1.585	9.618			
OCT	1925	1981	57	42	12	89	2	16	0.371	0.470	3.823			
NOV	1925	1981	57	44	12	136	3	22	0.489	2.069	9.838			
DEC	1925	1981	57	48	11	91	2	18	0.380	0.540	3.184			
MTHS	1925	1981	57	49	11	185	1	23	0.467	2.200	10.449			
ANNL	1925	1981	57	49	21	111	2	17	0.345	1.195	6.089			

The River Jucar, with a basin size of about 18000 km², has a mean discharge of 49 m³/s (annual maximum 111 m³/s, minimum 21 m³/s) and a very small mean discharge per unit area of only 2.7 l/(s*km²), only slightly bigger than that of River Guadalquivir ($2.5 l/(s*km^2)$).

Mean monthly maximum occurs in February/March (61 m³/s), the minimum in August/September (40-41 m³/s), while the absolute maximum is observed in March (185 m³/s) and the respective minimum from October to December (12-11 m³/s).

The annual series shows medium inter-annual variability, combined with strongly right-sided skew and a strongly leptokurtic distribution.

The monthly variability, however, is small in July and August (22-23 % variation coefficient) and stronger in the other months culminating in March (56.6 %).

The skewness is strongly right-sided in January up to June and also in September and November, combined with extraordinary values of the coefficient of kurtosis especially in September and November. I.e., during these months, relatively high floods may occur. While in October and December right-sided skew and leptokurtic kurtosis are small to moderate, in the summer months of July and August markedly peaked distributions combined with fairly high right-sided skew or even slightly left-sided skew are observed. I.e., in plain summer many values are markedly constantly about mean while only a few are higher (especially in July) or lower (especially in August).

	Basic Descriptive Statistics													
River:						LABE								
Station:					N	eu-Darcha	u							
GRDC#:	6340110													
Time	Begin	egin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur_			
JAN	1965	1988	24	936	264	2037	99	483	0.516	0.791	3.234			
FEB	1965	1988	24	1015	420	1673	73	360	0.355	0.284	2.371			
MAR	1965	1988	24	1054	420	1843	78	384	0.365	0.462	2.698			
APR	1965	1988	24	1232	490	2398	106	521	0.423	0.730	3.198			
MAY	1965	1988	24	930	414	1824	76	374	0.402	1.011	3.907			
JUN	1965	1988	24	734	360	1836	65	320	0.435	2.016	8.345			
JUL	1965	1988	24	576	200	1140	48	235	0.409	0.850	3.640			
AUG	1965	1988	24	534	197	1149	51	249	0.466	1.211	4.063			
SEP	1965	1988	24	493	218	1093	43	212	0.431	1.512	5.842			
OCT	1965	1988	24	514	291	894	37	181	0.352	0.702	2.940			
NOV	1965	1988	24	606	325	1492	61	298	0.491	1.540	5.528			
DEC	1965	1988	24	783	347	1901	82	400	0.511	1.469	5.300			
MTHS	1965	1988	24	784	197	2398	25	417	0.532	1.203	4.243			
ANNL	1965	1988	24	784	448	1132	40	197	0.251	0.054	2.381			

The River Labe, also called Elbe or Elba, with a basin size of about 132000 km², has a mean discharge of 784 m³/s (annual maximum 1132 m³/s, minimum 448 m³/s) and a small mean discharge per unit area of 5.9 l/(s*km²).

Mean monthly maximum is observed in April (1232 m³/s), the respective minimum in September (493 m³/s), while the absolute extremes occur in April (2398 m³/s) and August (197 m³/s), respectively.

The annual series' variability is small, and the distribution is without skew, slightly platykurtic.

The monthly series' variability is strong, the highest is observed in winter, in December and January (about 51 % variation coefficient), the lowest in February and October.

The skewness is strongly right-sided, besides in February, in conjunction with high kurtosis, especially in June (skew: +2.0, kurtosis: 8.4), September, November-December. I.e., during this month, relatively high floods may occur.

	Basic Descriptive Statistics												
River:						LOIRE							
Station:						Montjean							
GRDC#:	6123100												
Time	Begin	egin End # Mean Min Max SE Std CF CF CF											
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1863	1979	117	1397	336	3850	69	749	0.536	1.078	3.896		
FEB	1863	1979	117	1518	231	4150	77	829	0.546	1.027	3.598		
MAR	1863	1979	117	1376	323	3330	63	682	0.496	0.689	2.915		
APR	1863	1979	117	1113	247	2870	55	597	0.536	0.679	2.730		
MAY	1863	1979	117	806	178	1990	40	430	0.533	0.886	3.372		
JUN	1863	1979	117	576	110	1840	31	333	0.577	1.484	5.691		
JUL	1863	1979	117	358	77	1140	19	209	0.584	1.749	6.529		
AUG	1863	1979	117	259	60	1100	15	159	0.614	2.324	10.696		
SEP	1863	1979	117	268	78	875	15	158	0.590	1.737	6.417		
OCT	1863	1979	117	417	90	1490	26	277	0.662	1.392	5.093		
NOV	1863	1979	117	813	128	3590	58	630	0.775	1.874	7.325		
DEC	1863	1979	117	1156	191	4200	71	768	0.664	1.525	5.878		
MTHS	1863	1979	117	838	60	4200	19	700	0.835	1.543	5.589		
ANNL	1863	1979	117	838	282	1967	26	278	0.332	0.725	4.395		

The River Loire, with a long period of record of 117 years and a basin of 110000 km² size, has a mean discharge of 838 m³/s (annual maximum 1967 m³/s, minimum 282 m³/s) and a small mean discharge per unit area of 7.6 $I/(s*km^2)$, i.e. slightly more than the bigger River Labe basin.

Mean monthly maximum is highest in February (1518 m³/s), i.e. winter, and lowest in July (358 m³/s), whereas the absolute monthly extremes occur in December and February (4200/4150 m³/s) and August (60 m³/s), respectively.

The annual series has fair variability while having a right-tailed and markedly leptokurtic distribution, pointing at some relatively high values.

The monthly series' variability is strong, the highest is observed in winter, like at the River Labe, in November (about 78 % variation coefficient), the lowest in January, April and May.

The skewness is strongly right-sided, and in extreme cases combined with high kurtosis, as in the period June - December, culminating in August (skew: 2.3, kurtosis: 10.7). During these months, relatively high floods may occur.

	Basic Descriptive Statistics													
River:				NORTH	ERN DVI	NA (SEVI	ERNAYA I	OVINA)						
Station:					١	U st-Pineg a	l							
GRDC#:	6970250													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1882	1985	104	1030	369	1910	32	329	0.320	0.417	2.616			
FEB	1882	1985	104	823	319	1990	25	258	0.314	1.143	5.962			
MAR	1882	1985	104	716	348	1280	18	186	0.260	0.745	3.442			
APR	1882	1985	104	2329	488	10900	214	2178	0.935	1.865	6.337			
MAY	1882	1985	104	13699	5830	20800	323	3295	0.241	-0.070	2.288			
JUN	1882	1985	104	7079	2300	16100	292	2977	0.421	0.938	3.881			
JUL	1882	1985	104	2957	1180	5820	103	1051	0.355	0.789	3.031			
AUG	1882	1985	104	2159	546	6510	105	1071	0.496	1.669	6.201			
SEP	1882	1985	104	2306	790	7580	123	1254	0.544	1.682	6.485			
OCT	1882	1985	104	2904	918	8510	142	1451	0.500	1.299	5.223			
NOV	1882	1985	104	2380	566	9750	142	1445	0.607	1.942	9.612			
DEC	1882	1985	104	1402	491	3900	60	613	0.437	1.454	5.895			
MTHS	1882	1985	104	3315	319	20800	110	3886	1.172	2.236	7.573			
ANNL	1882	1985	104	3315	1785	5245	63	647	0.195	0.437	3.427			

The River Northern Dvina (Severnaya Dvina), with a long period of record of 104 years and the biggest basin of the selected European rivers with 348000 km² size, has a mean discharge of 3315 m³/s (annual maximum 5245 m³/s, minimum 1785 m³/s) and a mean discharge per unit area of 9.5 l/(s*km²).

Mean monthly maximum discharge is observed in May (13699 m³/s), i.e. spring, and the respective minimum in March (716 m³/s), i.e. late winter, almost coinciding with the absolute monthly extremes in May (20800 m³/s) and February (316 m³/s), respectively. Thus, as for the River Gloma, snow accumulation or ice jams in winter combined with snow melt in spring may be deduced.

The annual series has small variability and slightly right-tailed and leptokurtic distribution.

The monthly series has fairly high variability, the highest is observed at the end of winter in April (about 78 % variation coefficient), the lowest in January, April and May.

The skewness is mostly strongly right-sided, and in extreme cases combined with high kurtosis, especially in April and November. During these months, relatively high floods may occur. Only in May, the month with only small variability, there is no skew in the distribution and the shape is clearly platykurtic.

	Basic Descriptive Statistics PECHORA													
River:	I				F	PECHORA	1							
Station:						U <mark>st-Tsilm</mark> a	l							
GRDC#:	6970650													
Time	Begin	egin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1932	1984	53	707	426	1000	20	145	0.204	0.005	2.358			
FEB	1932	1984	53	560	331	832	18	132	0.236	-0.008	2.090			
MAR	1932	2 1984 53 481 250 712 17 125 0.260 -0.102 2.197												
APR	1932	1984	53	796	251	4390	108	784	0.985	3.490	15.781			
MAY	1932	1984	53	8936	1790	18400	592	4309	0.482	0.059	2.438			
JUN	1932	1984	53	13760	5700	24300	652	4750	0.345	0.514	2.883			
JUL	1932	1984	53	4787	1950	11800	276	2012	0.420	1.493	5.761			
AUG	1932	1984	53	2292	1150	5170	130	949	0.414	1.219	4.362			
SEP	1932	1984	53	2953	981	5750	181	1314	0.445	0.667	2.643			
OCT	1932	1984	53	3029	779	5990	167	1216	0.402	0.497	2.720			
NOV	1932	1984	53	1559	457	4000	95	689	0.442	1.467	5.610			
DEC	1932	1984	53	998	305	1430	32	230	0.230	-0.302	3.350			
MTHS	1932	1984	53	3405	250	24300	174	4389	1.289	2.218	7.902			
ANNL	1932	1984	53	3405	2576	4346	62	448	0.132	-0.033	2.551			

The River Pechora, with a basin of 248000 km² size second largest of the selected European rivers, has a mean discharge of 3405 m³/s (annual maximum 4346 m³/s, minimum 2576 m³/s) and a mean discharge per unit area of 13.7 l/(s*km²), i.e. slightly lower than that of the River Gloma basin at comparable climatic conditions, but higher than those located more to the south-west of Europe.

Mean monthly maximum occurs in June (13760 m³/s), the mean minimum in March (481 m³/s), while the absolute monthly extremes are observed in June (24300 m³/s) and March/April (250/251 m³/s), respectively.

The annual series has small variability while having a no skew and only slightly leptokurtic distribution.

The monthly series' variability is different according to the seasons: In the winter period of December and January, small variability is coupled with normal or slightly left-sided skew, mostly platykurtic, i.e. some relatively small values tend to occur. On the other hand, in April the highest variability (variation coefficient of 98.5%) is combined with elevated numbers of high discharge values, as the coefficients of skewness and kurtosis are extremely high. To a smaller extent, this holds to be true for the months of July and November.

	Basic Descriptive Statistics													
River:						RHEIN								
Station:						Rees								
GRDC#:	6335020													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1930	1996	_67	2639	1030	6094	143	1174	0.445	0.965	3.760			
FEB	1930	1996	67	2835	870	5920	146	1192	0.421	0.433	2.446			
MAR	1930	1996	67	2683	952	6351	127	1039	0.387	0.818	3.888			
APR	1930	1996	67	2503	1170	5100	102	834	0.333	0.680	3.558			
MAY	1930	1996	67	2288	977	4970	96	786	0.344	0.967	4.204			
JUN	1930	1996	67	2301	1159	4371	77	628	0.273	1.131	5.191			
JUL	1930	1996	67	2156	1013	4650	82	668	0.310	1.012	4.984			
AUG	1930	1996	67	1884	830	3664	68	557	0.296	0.469	3.441			
SEP	1930	1996	67	1697	800	3500	69	565	0.333	0.910	4.140			
OCT	1930	1996	67	1771	690	3820	88	723	0.408	1.003	3.779			
NOV	1930	1996	67	1991	770	4621	112	916	0.460	1.088	3.868			
DEC	1930	1996	67	2613	810	6917	163	1336	0.511	1.247	4.428			
MTHS	1930	1996	67	2280	690	6917	34	970	0.425	1.224	4.971			
ANNL	1930	1996	67	2280	1246	3280	60	493	0.216	-0.140	2.433			

The River Rhein, with a basin size of 160000 km² one of the biggest rivers in Central Europe, has a mean discharge of 2280 m³/s (annual maximum 3280 m³/s, minimum 1246 m³/s) and a fairly high mean discharge per unit area of 14.3 $l/(s*km^2)$.

Mean monthly maximum occurs in February (2835 m³/s), i.e. winter, and the minimum in September (1697 m³/s), while the absolute monthly maximum and minimum occur in December and October (6917 and 690 m³/s) and August (60 m³/s), respectively.

The annual series has small variability while having a slightly left-tailed and platykurtic distribution.

The monthly series has elevated variability above 30 % variation coefficient, being strongest in winter from November to January, while the skewness is generally right-sided, and in extreme cases combined with high kurtosis, as in June. During these months, relatively high floods may occur.

	Basic Descriptive Statistics													
River:						SEINE								
Station:						Poses								
GRDC#:	6122100													
Time	Begin	egin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1971	1977	7	390	254	695	57	152	0.390	1.648	7.016			
FEB	1971	1977	7	591	409	990	72	191	0.324	1.848	8.106			
MAR	1971	1977	7	433	326	625	42	112	0.258	0.805	4.411			
APR	1971	1977	7	381	256	640	50	133	0.350	1.395	6.412			
MAY	1971	1977	7	307	200	431	32	85	0.278	0.655	3.997			
JUN	1971	1977	7	244	146	336	25	67	0.276	-0.211	3.842			
JUL	1971	1977	7	208	136	285	20	53	0.257	0.050	3.588			
AUG	1971	1977	7	203	120	313	27	72	0.355	0.573	3.785			
SEP	1971	1977	7	202	142	257	16	41	0.203	-0.051	3.649			
OCT	1971	1977	7	242	165	433	35	92	0.378	1.864	8.031			
NOV	1971	1977	7	347	203	610	55	146	0.422	0.923	5.116			
DEC	1971	1977	7	454	225	730	59	155	0.341	0.531	6.091			
MTHS	1971	1977	7	334	120	990	18	160	0.481	1.359	5.547			
ANNL	1971	1977	7	334	244	431	28	75	0.224	0.251	2.925			

The River Seine, by its basin of 65000 km² about half the size of river Labe, has a mean discharge of 334 m³/s (annual maximum 431 m³/s, minimum 224 m³/s) and a small mean discharge per unit area of $5.1 \text{ l/}(\text{s*km}^2)$.

Mean monthly maximum occurs in February (591 m³/s), i.e. winter, and the minimum in August/September (203/202 m³/s), while the absolute monthly maximum and minimum occur in February (990 m³/s) and August (120 m³/s), respectively.

The annual series has small variability and fairly normal, slightly right-tailed distribution.

The monthly series has small to elevated variability, being strongest in November with 42.2 % variation coefficient.

The skewness and kurtosis, however, are partly distinct:

While in the period October - May, right-sided skew with very high coefficients of kurtosis are observed, culminating in February (skew: 1.8, kurtosis: 8.1), in the summer part of the rest of the year normal distribution, slightly leptokurtic, is observed.

The short period of record of 7 years is limiting the reliability of the figures.

Basic Descriptive Statistics														
River:					SEVERN	(Sub-Seri	ies No. 1)							
Station:						Bewdley								
GRDC#:	6609500													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1965	1972	8	121	77	186	13	36	0.302	1.009	4.486			
FEB	1965	1972	8	98	29	155	15	43	0.437	-0.137	3.936			
MAR	1965	1972 8 82 63 107 5 15 0.184 0.787 4.091												
APR	1965	1972	8	64	32	112	10	28	0.432	0.678	3.714			
MAY	1965	1972	8	62	25	133	13	36	0.584	1.214	5.456			
JUN	1965	1972	8	34	14	49	4	11	0.321	-0.420	5.191			
JUL	1965	1972	8	29	14	94	9	27	0.923	2.630	10.679			
AUG	1965	1972	8	28	19	35	2	6	0.207	-0.361	3.104			
SEP	1965	1972	8	36	15	71	8	22	0.625	0.793	3.411			
OCT	1965	1972	8	54	14	150	16	46	0.850	1.493	6.560			
NOV	1965	1972	8	79	55	94	5	14	0.173	-0.922	4.074			
DEC	1965	1972	8	132	52	300	28	80	0.602	1.575	6.535			
MTHS	1965	1972	8	68	14	300	5	48	0.702	1.670	7.985			
ANNL	1965	1972	8	68	48	80	4	11	0.158	-0.870	4.563			

The River Severn, with its basin size of about 4000 km², has a mean discharge of 68 m³/s (annual maximum 80 m³/s, minimum 48 m³/s) and a relatively high mean discharge per unit area of 15.8 $l/(s*km^2)$ during the period 1965 - 1972.

Mean monthly maximum is observed in December (132 m³/s), i.e. winter, and the minimum in July/August (29/28 m³/s), while the absolute monthly maximum occurs in December (300 m³/s) and the respective minimum in June, July, September, October, perhaps also in August (14 - 19 m³/s), respectively.

The annual series has small variability and a distribution skewed to the left and strongly leptokurtic, i.e. markedly peaked.

The monthly series has small to very strong variability, being strongest in July with November with 92.3 % and 85.0 % variation coefficient, respectively.

In cases of high variation coefficients, distribution is right-tailed and extremely peaked, e.g. in July, October, and December.

However, the short period of record of 8 years is limiting the reliability of the figures.

Basic Descriptive Statistics													
River:					SEVERN	(Sub-Ser	ies No. 2)						
Station:						Bewdley							
GRDC#:	6609500												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF											
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1976	1984	9	121	82	162	11	33	0.276	0.001	2.329		
FEB	1976	1984	9	108	56	_214	17	51	0.476	1.252	5.193		
MAR	1976	1984	9	99	42	176	17	51	0.515	0.384	2.911		
APR	1976	1984	9	50	22	93	8	25	0.503	0.720	3.619		
MAY	1976	1984	9	39	13	91	9	27	0.679	0.789	4.126		
JUN	1976	1984	9	27	9	37	4	11	0.389	-0.727	3.089		
JUL	1976	1984	9	14	5	22	2	5	0.369	-0.299	3.837		
AUG	1976	1984	9	18	3	33	3	10	0.542	0.228	3.446		
SEP	1976	1984	9	26	15	39	3	8	0.314	0.142	3.085		
OCT	1976	1984	9	63	21	112	11	33	0.524	0.291	3.209		
NOV	1976	1984	9	93	32	147	13	39	0.416	0.016	3.195		
DEC	1976	1984	9	118	84	175	11	32	0.268	0.855	3.556		
MTHS	1976	1984	9	65	3	214	5	49	0.759	0.838	2.897		
ANNL	1976	1984	9	65	43	75	3	10	0.158	-1.149	5.152		

For the River Severn in the slightly longer period 1976 - 1984 basically the same mean annual conditions prevail: mean discharge of 65(formerly in 1965 - 1972: 68) m³/s (annual maximum 75 (80) m³/s, minimum 43 (48) m³/s) and a relatively high mean discharge per unit area of 15.0 (15.8) l/(s*km²).

The annual series has still small variability and a distribution slightly more skewed to the left and more strongly leptokurtic.

However, mean monthly maximum is now observed in January (December) (121 m³/s), i.e. winter, and the minimum in July (July/August) (14 m³/s), while the absolute monthly maximum occurs now in February (December) (214 m³/s) and the respective minimum in July/August (June - October) (5 m³/s), respectively. The monthly series has small to strong variability, culminating in May (July/November) with 67.9 % variation coefficient (formerly 92.3/85.0), to a less extent in august and October, while the distribution is often normal with relatively extremely high values in February (skew: 1.3, kurtosis: 5.2) and relatively extremely low values in June and July (skew < 0).

The short period of record of 9 years is limiting the reliability of the figures another times.

Basic Descriptive Statistics													
River:					S	HANNON	1						
Station:						Killaloe							
GRDC#:	6502100												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF											
interval	year	ear year year Mean Dev Var Skw Kur											
JAN	1973	1979	7	311	_229	417	27	72	0.231	0.417	3.727		
FEB	1973	1979	7	318	194	400	27	72	0.228	-0.684	4.775		
MAR	1973	1979	7	215	140	291	23	60	0.277	0.088	3.475		
APR	1973	1979	7	151	84	222	22	59	0.392	0.016	2.664		
MAY	1973	1979	7	105	56	189	18	48	0.461	0.959	4.742		
JUN	1973	1979	7	57	21	173	20	52	0.916	2.351	9.806		
JUL	1973	1979	7	43	15	63	6	16	0.369	-0.711	5.206		
AUG	1973	1979	7	63	36	99	9	25	0.391	0.218	3.364		
SEP	1973	1979	7	105	36	292	34	89	0.848	1.943	8.465		
OCT	1973	1979	7	135	87	182	12	31	0.228	-0.256	4.959		
NOV	1973	1979	7	240	157	337	27	72	0.300	0.346	3.683		
DEC	1973	1979	7	328	182	477	34	91	0.278	0.048	5.686		
MTHS	1973	1979	7	173	15	477	13	117	0.680	0.565	2.362		
ANNL	1973	1979	7	173	138	205	9	23	0.133	-0.154	4.283		

The River Shannon, with a basin size of roughly 12000 km², has a mean discharge of 173 m³/s (annual maximum 205 m³/s, minimum 138 m³/s) and a relatively high mean discharge per unit area of 14.8 l/(s*km²).

Mean monthly maximum is reached in December (328 m³/s), i.e. winter, and the minimum occurs in July (43 m³/s), while the respective absolute monthly maximum occurs in December (477 m³/s) and the respective minimum in July (15 m³/s), respectively.

Although the annual series has small variability and a distribution only slightly skewed to the left, the distribution is markedly leptokurtic, i.e. markedly peaked.

The monthly series' variability is high in some months, combined with extremely positively skewed and leptokurtic distribution in June and September.

In cases of high variation coefficients, distribution is right-tailed and extremely peaked, e.g. in July, October, and December.

Another times, the short period of record of 7 years is limiting the reliability of the figures.

Basic Descriptive Statistics													
River:	1				TANA (Sub-Serie	s No. 1)						
Station:						Polmak							
GRDC#:	6730500												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF											
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1912	1943	32	55	39	73	1	7	0.131	-0.343	4.071		
FEB	1912	1943	32	48	33	63	1	6	0.128	-0.068	4.691		
MAR	1912	1943	32	45	34	59	1	5	0.106	0.412	5.227		
APR	1912	1943	32	48	35	62	1	6	0.125	0.453	3.539		
MAY	1912	1943	32	410	54	1038	40	226	0.550	0.616	3.869		
JUN	1912	1943	32	562	231	1377	54	303	0.540	0.895	3.193		
JUL	1912	1943	32	197	92	613	17	96	0.488	2.703	13.571		
AUG	1912	1943	32	156	60	407	13	74	0.476	1.509	6.166		
SEP	1912	1943	32	154	75	443	13	71	0.460	2.321	10.982		
OCT	1912	1943	32	134	64	246	7	42	0.314	0.963	3.813		
NOV	1912	1943	32	98	55	188	6	32	0.325	1.362	4.714		
DEC	1912	1943	32	69	46	- 90	2	12	0.172	-0.085	2.638		
MTHS	1912	1943	32	165	33	1377	10	194	1.175	2.846	12.448		
ANNL	1912	1943	32	165	102	268	6	31	0.191	0.983	5.835		

The River Tana has a basin size of approximately 14000 km² and a mean discharge of 165 m³/s (annual maximum 268 m³/s, minimum 102 m³/s) and a mean discharge per unit area of 11.7 l/(s*km²) during the period 1912 - 1943.

Mean monthly maximum is reached in June (562 m³/s), and the minimum occurs in February - April (45 - 48 m³/s), while the respective absolute monthly maximum occurs in June (1377 m³/s) and the respective minimum in the period of February - April (33 - 34 m³/s).

Although the annual series has small variability, the distribution is markedly skewed to the right and prominently leptokurtic, i.e. strongly peaked.

The monthly series' variability is only high in some months, between May and November. The highest variation coefficient does not coincide with the highest skew, only to be negative in the period December - February, and the highest kurtosis: The highest coefficients are observed in July and August.

Basic Descriptive Statistics													
River:					TANA ((Sub-Serie	s No. 2)						
Station:						Polmak							
GRDC#:	6730500												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF											
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1947	1987	41	53	37	79	1	8	0.152	0.889	5.124		
FEB	1947	1987	41	45	34	58	1	6	0.129	0.236	2.501		
MAR	1947	1987	41	42	32	53	1	5	0.122	0.237	2.681		
APR	1947	1987	41	51	33	145	4	23	0.448	2.924	11.835		
MAY	1947	1987	41	466	79	979	32	208	0.446	0.242	2.891		
JUN	1947	1987	41	517	153	1253	38	244	0.471	0.770	4.038		
JUL	1947	1987	41	200	92	449	14	88	0.440	1.113	4.324		
AUG	1947	1987	41	165	60	339	11	68	0.414	0.912	3.443		
SEP	1947	1987	41	163	65	432	12	78	0.478	1.847	7.068		
OCT	1947	1987	41	144	76	381	8	54	0.373	2.217	11.266		
NOV	1947	1987	41	94	51	160	3	22	0.235	0.753	4.099		
DEC	1947	1987	41	66	40	114	2	12	0.186	1.359	8.278		
MTHS	1947	1987	41	167	32	1253	8	185	1.106	2.324	8.969		
ANNL	1947	1987	41	167	106	235	5	30	0.177	-0.115	2.906		

For the River Tana in the longer period 1947 - 1987 basically the same mean annual conditions prevail: mean discharge of 167(formerly in 1912 - 1943: 165) m³/s (annual maximum 235 (268) m³/s, minimum 106 (102) m³/s) and a relatively high mean discharge per unit area of 11.9 (11.7) $l/(s^*km^2)$.

The annual series has still small variability, but the distribution now is more or less normal !

Mean monthly maximum is still observed in June (June) (517 m^3/s), and the minimum now only in February/March (February - April) (42 - 45 m^3/s), while the absolute monthly maximum occurs also in June (June) (1253 m^3/s) and the respective minimum in February - April (February - April) (32 - 34 m^3/s), respectively.

The monthly series has strong variability, too, now between April and October, shifted backward for one month. This time, highest skew and kurtosis are observed in April (July/August).

	Basic Descriptive Statistics													
River:						TAY								
Station:						Ballathie								
GRDC#:	6604610													
Time	Begin	egin End # Mean Min Max SE Std CF CF CF												
interval	year	year year year Mean Dev Var Skw Kur												
JAN	1980	1984	5	301	170	471	50	111	0.369	0.785	7.864			
FEB	1980	1984	5	227	172	269	17	38	0.166	-0.719	6.466			
MAR	1980	<u>1984 5 243 173 297 21 47 0.194 -0.601 7.001</u>												
APR	1980	1984	5	144	100	209	18	40	0.278	1.278	9.009			
MAY	1980	1984	5	103	45	231	33	74	0.718	1.918	9.935			
JUN	1980	1984	5	75	50	126	14	32	0.431	1.344	7.503			
JUL	1980	1984	5	47	31	66	7	15	0.314	0.372	4.863			
AUG	1980	1984	5	58	25	109	16	35	0.613	0.796	5.973			
SEP	1980	1984	5	150	68	208	29	64	0.428	-0.622	4.421			
OCT	1980	1984	5	259	184	390	39	87	0.335	0.935	6.509			
NOV	1980	1984	5	288	114	408	54	120	0.418	-0.609	6.154			
DEC	1980	1984	5	267	149	342	33	74	0.279	-1.128	7.865			
MTHS	1980	1984	5	180	25	471	14	110	0.613	0.473	2.636			
ANNL	1980	1984	5	180	157	208	9	19	0.107	0.430	6.711			

The River Tay, with a basin size of about 5000 km², has a mean discharge of 180 m³/s (annual maximum 208 m³/s, minimum 157 m³/s) and a extremely high mean discharge per unit area of $39.2 l/(s*km^2)$.

Mean monthly maximum occurs in January (301 m³/s), i.e. winter, and the minimum in July (47 m³/s), while the respective absolute monthly extremes are reached in the same months: January (471 m³/s) and July/August (25 - 31 m^3 /s).

Although the annual series has small inter-annual variability and a distribution only slightly skewed to the right, the kurtosis is very high, i.e. extremely peaked.

The monthly series' inner-annual variability is mostly small, extremely elevated only in the months of May and August.

The skew and kurtosis show distributions strongly skewed to the right and to the left without a interpretable scheme, which together with the mostly extremely high kurtosis points at the probable missing of reliable information on extreme values as a consequence of the short period of record of only 5 years. The mean monthly discharge, however, seems to be reliable for all months except for May and August with variation coefficients above 60 %.

	Basic Descriptive Statistics													
River:						TEJO				_				
Station:						Almourol								
GRDC#:	6113050													
Time	Begin	BeginEnd#MeanMinMaxSEStdCFCF												
interval	year	year year year Mean Dev Var Skw Kur												
JAN	1976	1984	9	629	96	1636	172	517	0.823	0.962	4.373			
FEB	1976	1984	9	919	40	3841	429	1288	1.401	1.825	6.734			
MAR	1976	1984 9 512 42 1932 222 665 1.298 1.512 5.470												
APR	1976	1984	9	291	50	1087	116	349	1.199	1.841	6.904			
MAY	1976	1984	9	220	36	537	63	188	0.853	1.027	3.881			
JUN	1976	1984	9	177	40	439	45	135	0.764	1.165	4.427			
JUL	1976	1984	9	144	25	369	41	123	0.854	1.191	4.248			
AUG	1976	1984	9	133	36	304	31	92	0.692	0.957	4.061			
SEP	1976	1984	9	126	63	217	18	54	0.426	0.430	3.315			
OCT	1976	1984	9	200	46	613	60	179	0.897	1.715	7.139			
NOV	1976	1984	9	440	104	1212	122	366	0.830	1.411	5.462			
DEC	1976	1984	9	659	143	1333	152	455	0.690	0.362	2.683			
MTHS	1976	1984	9	371	25	3841	51	531	1.432	3.584	20.546			
ANNL	1976	1984	9	371	90	884	90	269	0.725	1.016	4.007			

The River Tejo, with a basin size of about 67000 km², has a mean discharge of 371 m³/s (annual maximum 884 m³/s, minimum 90 m³/s) and a relatively low mean discharge per unit area of $5.5 l/(s*km^2)$.

Mean monthly discharge culminates in February (919 m^3/s), i.e. winter, and is least in September (126 m^3/s), while the respective absolute monthly maximum occurs in February (3841 m^3/s) and the minimum in July (25 m^3/s), respectively.

The annual series has very high variability of 72.5 % variation coefficient and a distribution strongly skewed to the right and markedly leptokurtic, i.e. markedly peaked.

The monthly series' variability is equally very high, even extraordinarily high between February and April (120 - 140 % variation coefficient).

Extreme right-tailedness and at least strong peakedness of the distribution are combined in all months besides September and December, culminating in February - April and October - November. This indicates that relatively high floods can occur in the winter season

Another times, the short period of record of 9 years for this river crossing relatively arid regions is limiting the reliability of the figures.

Basic Descriptive Statistics													
River:						THAMES							
Station:]	feddingtor	1						
GRDC#:	6607700												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF											
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1965	1984	20	138	35	221	11	51	0.368	-0.257	2.895		
FEB	1965	1984	20	136	36	258	13	60	0.437	-0.152	3.077		
MAR	1965	1984	20	126	30	205	12	52	0.414	-0.263	2.496		
APR	1965	1984	20	91	25	186	9	38	0.421	0.676	4.305		
MAY	1965	1984	20	77	20	137	8	36	0.473	0.091	2.320		
JUN	1965	1984	20	54	15	142	7	31	0.575	1.365	5.574		
JUL	1965	1984	20	36	9	92	4	18	0.519	1.365	6.753		
AUG	1965	1984	20	34	9	71	4	18	0.529	0.445	2.794		
SEP	1965	1984	20	38	11	145	7	29	0.772	2.834	12.423		
OCT	1965	1984	20	55	15	137	8	36	0.646	1.053	3.465		
NOV	1965	1984	20	81	20	228	11	49	0.607	1.377	6.026		
DEC	1965	1984	20	113	41	197	10	46	0.404	0.099	2.512		
MTHS	1965	1984	20	82	9	258	4	55	0.672	0.784	2.774		
ANNL	1965	1984	20	82	41	112	5	22	0.272	-0.405	2.523		

The River Thames, with about 10000 km² basin size, has a mean discharge of 82 m³/s (annual maximum 112 m³/s, minimum 41 m³/s) and a mean discharge per unit area of only $8.2 l/(s*km^2)$.

Mean monthly maximum is observed in January/February $(138/136 \text{ m}^3/\text{s})$, the minimum in January/August/September $(36/34/38 \text{ m}^3/\text{s})$ with absolute extremes in February $(258 \text{ m}^3/\text{s})$ and July/August $(9 \text{ m}^3/\text{s})$.

Inter-annual variability of the annual series is relatively small, while a distribution slightly skewed to the left and platykurtic, indicating some relatively small values.

The monthly series' variability is high, especially in the period September - November.

While the skew is not present or slightly left-sided in the winter season (December – March) and May, combined with platykurtic distribution. In other months, skew is fairly to extremely high, combined with elevated kurtosis, culminating in 2.8 and 12.4, respectively in September.

	Basic Descriptive Statistics													
River:					VAE	NERN-GC	ETA							
Station:					V	aenersbor	g							
GRDC#:	6229500													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1807	1992	186	540	251	878	10	133	0.246	0.293	2.698			
FEB	1807	1992	186	537	204	921	10	134	0.249	0.364	3.005			
MAR	1807	07 1992 186 533 193 912 10 134 0.252 0.487 3.223												
APR	1807	1992	186	532	263	911	9	127	0.238	0.537	3.443			
MAY	1807	1992	186	543	249	912	9	123	0.227	0.204	3.370			
JUN	1807	1992	186	551	157	880	10	138	0.250	-0.528	3.189			
JUL	1807	1992	186	530	155	859	11	149	0.281	-0.703	3.228			
AUG	1807	1992	186	529	162	792	9	128	0.243	-0.471	3.134			
SEP	1807	1992	186	523	192	857	9	128	0.244	-0.273	3.005			
OCT	1807	1992	186	520	191	816	9	123	0.237	-0.060	2.884			
NOV	1807	1992	186	531	166	984	9	125	0.235	0.218	3.567			
DEC	1807	1992	186	540	173	934	10	131	0.243	0.034	2.933			
MTHS	1807	1992	186	534	155	984	3	131	0.246	-0.020	3.115			
ANNL	1807	1992	186	534	225	768	7	99	0.186	-0.102	2.670			

The River Vaenern-Goeta, with a basin size of roughly 47000 km², has a mean annual discharge of 534 m³/s (annual maximum 768 m³/s, minimum 225 m³/s) and a mean discharge per unit area of 11.4 l/(s*km²).

Mean monthly maximum occurs in June (550 m³/s), the minimum in October or September (520/523 m³/s), while the absolute maximum is observed in November (984 m³/s) and the respective minimum in July or June (155/157 m³/s).

Inter-annual variability is small, with a distribution slightly skewed to the left side and platykurtic.

The monthly series' variability is very distinct from that one of other European rivers: Mean monthly values have an extremely small range of $520 - 550 \text{ m}^3$ /s, very constant standard deviation, corresponding to an inner-annual variability of 24 - 28 % variation coefficient, while the standard error of the mean is surprisingly constant.

The kurtosis is more or less within ranges of normal distribution, reaffirming the symmetry of the standard deviation. However, the skewness shows some deviations from symmetry: right-sided skew in March and April (some relatively high values), left-sided skew between June and August (some relatively low values).

	Basic Descriptive Statistics													
River:						WESER								
Station:						Intschede								
GRDC#:	6337200													
Time	Begin	BeginEnd#MeanMinMaxSEStdCFCF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1921	1984	64	460	149	1155	28	226	0.492	0.881	4.016			
FEB	1921	1984	64	485	116	1439	31	250	0.516	1.099	5.131			
MAR	1921	1984	64	461	131	1050	26	207	0.449	0.880	3.371			
APR	1921	1984	64	407	123	867	21	169	0.415	0.755	3.292			
MAY	1921	1984	64	285	127	647	14	111	0.389	1.133	4.634			
JUN	1921	1984	64	236	101	720	14	109	0.462	2.175	9.335			
JUL	1921	1984	64	219	87	893	16	132	0.604	2.719	13.302			
AUG	1921	1984	64	192	73	466	10	83	0.431	1.062	3.947			
SEP	1921	1984	64	183	68	553	10	82	0.448	1.627	8.320			
OCT	1921	1984	64	206	65	498	12	100	0.484	1.030	3.725			
NOV	1921	1984	64	284	90	786	19	149	0.522	1.115	4.460			
DEC	1921	1984	64	381	97	1040	28	221	0.581	1.185	3.862			
MTHS	1921	1984	64	317	65	1439	7	197	0.621	1.529	5.867			
ANNL	1921	1984	64	317	150	532	12	92	0.291	0.472	2.875			

The River Weser, with its basin size of 38000 km², has a mean annual discharge of 317 m³/s (annual maximum: 532 m³/s, minimum: 150 m³/s) and a mean discharge per unit area of 8.4 l/($s*km^2$).

Mean monthly maximum discharge occurs in February (485 m³/s); the minimum in September (183 m³/s), the absolute maximum and minimum in February (1439 m³/s) and September/October (68/65 m³/s).

While annual series show more or less variability and normal kurtosis, the skew is slightly positive to the right side.

Throughout the year, the variability of the monthly series is high, culminating in December (58 % variation coefficient).

Skewness is always fairly up to extremely right-sided, especially in July, June and September, when also the kurtosis is extremely positive, i.e. skewed to the right side, indicating possible high floods in mid-summer.

	Basic Descriptive Statistics													
River:						WYE								
Station:]	Ddol Farm	1 <u></u>							
GRDC#:	6608500													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1977	1989	13	11.0	4.3	18.4	1.3	4.8	0.433	0.352	2.562			
FEB	1977	1989	13	8.2	1.5	16.2	1.1	3.8	0.461	0.421	4.219			
MAR	1977	1989	13	9.9	2.3	19.2	1.4	5.0	0.500	0.544	3.558			
APR	1977	1989	13	4.5	0.7	9.3	0.7	2.5	0.561	0.207	3.127			
MAY	1977	1989	13	2.7	0.0	8.3	0.8	2.7	1.016	1.050	3.794			
JUN	1977	1989	13	2.3	0.2	8.3	0.6	2.1	0.919	2.141	9.046			
JUL	1977	1989	13	1.4	0.0	3.9	0.4	1.3	0.942	0.926	3.144			
AUG	1977	1989	13	2.7	0.1	9.4	0.7	2.6	0.979	1.325	5.613			
SEP	1977	1989	13	4.3	1.1	9.5	0.7	2.3	0.541	0.884	4.271			
OCT	1977	1989	13	9.3	2.0	18.3	1.5	5.2	0.565	0.426	2.794			
NOV	1977	1989	13	11.2	3.3	17.6	1.4	5.1	0.457	-0.109	2.357			
DEC	1977	1989	13	12.3	6.0	17.5	1.2	4.2	0.337	-0.403	2.414			
MTHS	1977	1989	13	6.7	0.0	19.2	0.4	5.3	0.793	0.732	2.575			
ANNL	1977	1989	13	6.7	5.4	7.7	0.2	0.6	0.095	-0.214	3.428			

The River Wye, with 174 km² the smallest of the selected basins, has the least mean annual discharge of 6.7 m³/s (annual maximum 77 m³/s, minimum 5.4 m³/s), though the biggest mean discharge per unit area of 38.5 l/(s*km²).

Mean monthly maximum discharge is observed in December (12.3 m³/s), the minimum in July (1.4 m³/s), while the absolute extremes range from 19.2 m³/s in March to 0.0 m³/s in July.

The annual series shows very small variability, with normal distribution, slightly skewed to the left side.

Nevertheless, the monthly series shows marked and even extreme variability in the period from May to August with the exception of December with a somewhat smaller variation coefficient.

Skewness in winter (October – April) is around normal distribution, with skew to the left side in November and December, pointing at some relatively low values. For winter this period, mostly platykurtic distribution prevails. While for the months with marked right-sided skew (May – September) the kurtosis shows leptokurtic distributions, culminating in May (May: skew 2.1, kurtosis: 9.0).

7.3.2 Non-European Regions

	Basic Descriptive Statistics													
River:						NILE								
Station:						el Ekhsase								
GRDC#:	1362100													
Time	BeginEnd#MeanMinMaxSEStdCFCF													
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1973	1984	12	1239	735	1528	67	232	0.187	-0.646	4.283			
FEB	1973	1984	12	1035	822	1198	31	106	0.102	-0.469	3.875			
MAR	1973	1984 12 1126 1008 1340 28 98 0.087 0.858 4.335												
APR	1973	1984	12	1110	968	1469	38	131	0.118	1.995	8.489			
MAY	1973	1984	12	1170	1067	1433	27	94	0.081	2.216	9.194			
JUN	1973	1984	12	1542	1447	1643	16	57	0.037	0.071	3.375			
JUL	1973	1984	12	1742	1642	1877	24	82	0.047	0.479	2.851			
AUG	1973	1984	12	1560	1500	1657	16	54	0.034	0.704	2.830			
SEP	1973	1984	12	1191	1076	1308	22	77	0.065	0.068	2.504			
OCT	1973	1984	12	1103	974	1238	29	100	0.091	-0.031	2.091			
NOV	1973	1984	12	1075	949	1226	26	89	0.083	0.059	2.628			
DEC	1973	1984	12	1124	955	1347	37	129	0.115	0.426	2.801			
MTHS	1973	1984	12	1251	735	1877	21	246	0.197	0.708	2.574			
ANNL	1973	1984	12	1251	1131	1390	24	82	0.065	0.254	2.716			

7.3.2.1 Africa (GRDC Region #1)

The River Nile, with a basin size of 2900000 km, has a mean discharge of 1251 m³/s (annual maximum 1390 m³/s, minimum 1131 m³/s and a mean discharge per unit area of only 0.4 $l/(s*km^2)$ due to its epirheic character – the lower portion of the basin, does not contribute much to the river's runoff.

Mean monthly maximum discharge occurs in July (1742 m³/s) and the minimum in February (1035 m³/s), while the absolute maximum is observed in July (1877 m³/s) and the respective minimum in January (735 m³/s).

The annual series shows small variability with approximately normal distribution. The monthly series is characterised by little variability (around 10 % variation coefficient), only more prominent in January (19 %), very low in summer (June – August).

The skewness, however, has a very variable pattern:

Some months show symmetrical skew and prevailing platykurtic distribution (September – June). July, August and December are months of moderate right-sided skew with kurtosis of about normal distribution. In January and February, left-sided skew is combined with higher kurtosis, pointing at some relatively low-values.

March and April show considerable up to extremely right-sided skew combined with high positive kurtosis, culminating in May (2.2/9.2). The relatively short period of record of 12 years for a river with partly arid environmental conditions may be one cause of the variable distribution pattern.

Basic Descriptive Statistics														
River:						BENUE								
Station:						Yola								
GRDC#:	1835800													
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1960	1989	30	5	1	13	1	4	0.78	1.21	3.194			
FEB	1960	1989	30	3	0	10	1	3	0.889	1.278	3.732			
MAR	1960	1989	30	3	- 0	8	0	2	0.947	0.731	2.59			
APR	1960	1989	30	2	0	6	0	2	1.129	0.989	2.845			
MAY	1960	1989	30	4	0	17	1	4	0.939	1.816	7.469			
JUN	1960	1989	30	7	2	16	1	3	0.521	1.484	4.825			
JUL	1960	1989	30	22	7	52	2	10	0.472	0.884	4.187			
AUG	1960	1989	30	51	14	114	4	24	0.477	0.86	3.663			
SEP	1960	1989	30	89	23	174	8	44	0.495	0.607	2.705			
OCT	1960	1989	30	40	0	- 77	4	21	0.522	0.061	2.222			
NOV	1960	1989	30	30	5	199	7	38	1.281	3.175	15.525			
DEC	1960	1989	30	8	2	21	1	7	0.791	1.302	3.313			
MTHS	1960	1989	30	22	0	199	2	32	1.466	2.506	10.484			
ANNL	1960	1989	30	22	9	46	2	9	0.401	1.066	4.517			

The River Benue, a River Niger tributary with a basin size of 107000 km², has a mean discharge of 22 m³/s (annual maximum 46 m³/s, minimum 9 m³/s) and a mean discharge per unit area of only 0.2 l/(s*km²), pointing at the arid condition of this region.

Monthly mean maximum is reached in September (89 m³/s), the minimum in April (2 m³/s). While the respective absolute maximum is observed in November (199 m³/s) or September (174 m³/s), the absolute minimum either between February or May, or October.

The annual series' variability is high, as is the right-sided skew and the kurtosis, indicating some extremely high values.

The monthly series' variability is high throughout the year, with more or less about 50 % variation coefficient during June – October, the wet season period, the higher values being observed in the dry season period of December up to May, as in November. The extremes are reached in April (113 %) or November (128 %).

The distributions are markedly skewed to the right side with the exception of the month of October, while the kurtosis is not directly linearly depending on skew and platykurtic, but also extremely leptokurtic distributions are encountered.

Most prominent extreme skew and kurtosis are present before and after the wet season in May – June and November, indicating possible relatively high flood discharge in this month. Extreme skew without extremely positive, right-sided kurtosis is observed between December and February.

	Basic Descriptive Statistics													
River:					Z	AMBEZH	E							
Station:	_				Μ	atundo-Ca	ais							
GRDC#:	i					1891500								
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1976	1979	4											
FEB	1976	1979	4											
MAR	1976	1979	4		_				_					
APR	1976	1979	4											
MAY	1976	1979	4											
JUN	1976	1979	4											
JUL	1976	1979	4											
AUG	1976	1979	4						- ·					
SEP	1976	1979	4								_			
OCT	1976	1979	4								-			
NOV	1976	1979	4											
DEC	1976	1979	4											
MTHS	1976	1979	4	3337	540	12382	353	250	0.733	1.816	6.850			
ANNL	1976	1979	4	3337							_			

The TS-programme did not yield results of sufficient reliability for this short period of time of only four years, only the CHPP-programme for the monthly sequence of the values.

	Basic Descriptive Statistics													
River:					CHANGJ	IANG (YA	NGTZE)							
Station:						Datong								
GRDC#:		2181900												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1947	1986	40	10164	1110	17800	466	2949	0.290	0.308	5.685			
FEB	1947	1986	40	11105	6730	19400	424	2680	0.241	0.891	4.082			
MAR	1947	1986	40	15047	7980	25100	696	4404	0.293	0.576	2.696			
APR	1947	1986	40	23267	12800	36700	819	5179	0.223	-0.107	3.393			
MAY	1947	1986	40	34497	23900	51800	1223	7735	0.224	0.466	2.454			
JUN	1947	1986	40	40482	27200	60600	1307	8264	0.204	0.275	2.579			
JUL	1947	1986	40	49233	32800	75200	1500	9484	0.193	0.664	3.371			
AUG	1947	1986	40	43778	25900	84200	1682	10638	0.243	1.356	7.373			
SEP	1947	1986	40	40570	21600	71300	1531	9683	0.239	0.614	4.672			
OCT	1947	1986	40	34838	16800	51600	1336	8450	0.243	0.182	2.906			
NOV	1947	1986	40	24108	13200	39000	992	6275	0.260	0.558	2.733			
DEC	1947	1986	40	14579	8310	24400	594	3758	0.258	0.719	3.254			
MTHS	1947	1986	40	28472	1110	84200	684	14975	0.526	0.464	2.566			
ANNL	1947	1986	40	28472	21377	42933	705	4461	0.157	0.977	4.658			

7.3.2.2 Asia (GRDC Region #2)

The River Changjiang or Yangtze, with a basin size of about 1705000 km², has a mean discharge of 28472 m³/s (annual maximum 42933 m³/s, minimum 21377 m³/s) and a fairly high mean discharge per unit area of 16.7 $l/(s^{*}km^{2})$.

Mean monthly discharge reaches its maximum in July (49233 m³/s), its minimum in January (10164 m³/s), while the absolute maximum is reached in August (84200 m³/s), the respective minimum in Jan (1110 m³/s).

The annual series shows small variability combined with marked right-sided skew and prominent leptokurtic distribution, pointing at some relatively high values.

The monthly series, however, shows still small variability culminating in January and March. Three distinct groups of months may be distinguished concerning skewness and kurtosis:

1st: Within most months, skew and kurtosis are small to fairly high, coupled with indifferent kurtosis around normal distribution. An exceptional negative, but small skew combined with small leptokurtic conditions, is observed in April.

2nd: In late summer (August and September), marked leptokurtic distribution together with a marked skew to the right-side is calling the attention, pointing at relatively high floods. The maximum monthly discharge is, therefore, observed just in August.

3rd: In the months of January and February, marked kurtosis combined with distinct right-sided skew is observed, indicating the presence of some relatively high values, too.

Basic Descriptive Statistics													
River:					l	MEKONG	r						
Station:						Pakse							
GRDC#:						2469260							
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF											
interval	year	year	year				Mean	Dev	Var	Skw	Kur		
JAN	1982	1991	10	2814	2060	3493	114	361	0.128	-0.389	6.356		
FEB	1982	1991	10	1972	1505	2302	65	206	0.104	-1.017	6.650		
MAR	1982	1991	10	1939	1482	2392	77	244	0.126	0.090	5.131		
APR	1982	1991	10	1842	1551	2244	69	218	0.118	0.495	3.664		
MAY	1982	1991	10	2478	1917	3305	126	398	0.160	0.767	4.911		
JUN	1982	1991	10	6900	4271	10740	587	1857	0.269	0.799	4.785		
JUL	1982	1991	10	14566	9611	20645	1137	3596	0.247	0.479	3.403		
AUG	1982	1991	10	25831	19874	32022	1328	4201	0.163	0.230	2.921		
SEP	1982	1991	10	23888	18677	26803	770	2435	0.102	-1.037	5.016		
OCT	1982	1991	10	16817	13416	21109	656	2074	0.123	0.568	5.411		
NOV	1982	1991	10	8291	6187	10667	379	1200	0.145	0.405	5.255		
DEC	1982	1991	10	4404	3685	5516	166	526	0.119	1.099	5.186		
MTHS	1982	1991	10	9312	1482	32022	792	8672	0.931	0.984	2.711		
ANNL	1982	1991	10	9312	7596	11126	324	1025	0.110	0.111	4.056		

The River Mekong, with a basin size of 5945000 km², has a mean discharge of 9312 m³/s (annual maximum: 11126 m³/s, minimum: 7596 m³/s) and a fairly high mean discharge per unit area of 17.1 $l/(s*km^2)$.

Mean monthly maximum discharge is observed in August (25831 m³/s), minimum in April (1842 ³/s), with a high maximum/minimum ratio of 14 ! The absolute maximum is observed in August (32022), the respective minimum in March (1482 m³/s).

Annual series shows small variability in significant slightly positive skew, but prominent kurtosis, pointing at some extreme values.

Monthly series' variability is small, around 12 % variation coefficient, except for June and July when relatively high values of about 25 % are observed.

Considering skew and kurtosis, the months of April, July and August show somewhat right-tailed skew, combined with normal or slightly leptokurtic distribution.

- The other months show all marked kurtosis (about > 5), while the skewness is indifferently:
- no skew in March
- fairly right-sided skew in the periods May June and October December
- fairly high left-sided skew in January, February and September

Basic Descriptive Statistics														
River:						LENA								
Station:						Kusur								
GRDC#:	2903420													
Time	Begin	End	#	Mean	Min	Max	SE	Std	CF	CF	CF			
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1936	1994	59	2777	1530	4199	85	652	0.235	0.376	2.436			
FEB	1936	1994	59	2131	1020	3530	79	610	0.286	0.441	2.579			
MAR	1936	1994	59	1656	692	2969	74	572	0.346	0.754	2.786			
APR	1936	1994	59	1351	429	2730	63	481	0.356	0.909	3.449			
MAY	1936	1994	59	6260	563	32000	932	7159	1.144	2.314	7.918			
JUN	1936	1994	59	73969	44400	100480	1418	10890	0.147	0.145	3.308			
JUL	1936	1994	59	39536	25000	58100	1094	8407	0.213	0.316	2.266			
AUG	1936	1994	59	27254	12854	42906	837	6427	0.236	0.176	3.127			
SEP	1936	1994	59	23848	13219	36000	817	6279	0.263	0.148	2.134			
OCT	1936	1994	59	13624	2300	21700	502	3857	0.283	-0.060	3.114			
NOV	1936	1994	59	3499	1900	9360	142	1092	0.312	2.657	16.205			
DEC	1936	1994	59	2927	1890	6530	100	767	0.262	1.879	10.181			
MTHS	1936	1994	59	16569	429	100480	816	21709	1.310	1.725	5.341			
ANNL	1936	1994	59	16569	12478	22626	259	1986	0.120	0.525	3.426			

The River Lena, with its 2340000 km² basin size, has a mean discharge of 16569 m³/s (annual maximum 22626 m³/s, min 12478 m³/s) and a mean discharge per unit area of only 7.1 l/(s*km²).

Mean monthly maximum is reached in June (73969 m³/s), minimum in April (1315 m³/s), only 2 months before, while the absolute maximum and minimum is observed in the same months (100480 and 429 m³/s), suspected to be due to different times of snow and ice jam breaking in different years.

The annual series shows variability with faintly right-sided skew and slightly leptokurtic distribution.

Monthly series are small to moderately variable (20 - 35 % variation coefficient) besides the outstanding 114 % variability of the month of May.

Skewness is only small in the period of July to October, with platykurtic or normal distribution.

In the plain winter (the January – March), the distribution is fairly skewed to the right-side and platykurtic, in April somewhat more skewed and slightly leptokurtic.

For the other winter months of November to December and in the spring month May, the kurtosis is extremely high. In November and December the skew is extremely to the right side, in early spring including May, too.

	Basic Descriptive Statistics													
River:						YENISEI								
Station:						Igarka		-	-					
GRDC#:						290915								
Time	Begin	End	#	Mean	Min	Max	SE	Std	CF	CF	CF			
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1936	1994	59	6006	4000	9260	190	1461	0.243	0.470	2.082			
FEB	1936	1994	59	5927	3770	8790	213	1635	0.276	0.245	1.552			
MAR	1936	1994	59	5928	3380	9668	269	2065	0.348	0.486	1.793			
APR	1936	1994	59	5914	3120	10380	300	2303	0.389	0.453	1.753			
MAY	1936	1994	59	27448	6180	65000	1726	13259	0.483	0.941	3.675			
JUN	1936	1994	59	77468	41900	112000	1784	13705	0.177	-0.054	3.959			
JUL	1936	1994	59	26519	17629	36700	634	4872	0.184	0.135	2.300			
AUG	1936	1994	59	17473	12000	25600	445	3418	0.196	0.710	2.930			
SEP	1936	1994	59	16830	11035	23800	366	2808	0.167	0.054	2.721			
OCT	1936	1994	59	13895	8220	20800	319	2454	0.177	0.502	3.466			
NOV	1936	1994	59	6743	4640	11441	188	1445	0.214	1.205	5.149			
DEC	1936	1994	59	5740	4200	8778	162	1243	0.217	0.949	2.959			
MTHS	1936	1994	59	17991	3120	112000	768	20425	1.135	2.370	8.193			
ANNL	1936	1994	59	17991	15543	20966	179	1377	0.077	0.210	2.294			

The River Yenisei, has a basin of 2440000 km² and a mean discharge of 17991 m³/s (annual maximum 20966 km², minimum 15543 km²) and a mean discharge per unit area of only 7.4 $l/(s*km^2)$ and a discharge regime similar to River Lena.

Mean monthly maximum is observed in June (77468 m³/s), minimum in April (5914 m³/s), 2 months before. The absolute maximum and minimum occur equally in June (112000 m³/s) and in April (3120 m³/s).

The annual series shows very small variability, a faintly right-sided skewed and some platykurtic distribution.

The monthly series' variability is small from July to February and only moderately high for the rest of the year, culminating in 48.3 % variation coefficient in May.

As for River Lena, the skewness is mostly small for most of the period July to October, besides August, while normal to platykurtic distribution prevails. Moderate right-sided skew and leptokurtic distribution characterises also the period January – April. November, December and May show prominent right-sided skew with normal to strong leptokurtic distribution.

Basic Descriptive Statistics														
River:						OB								
Station:						Salekhard								
GRDC#:		2912600												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1936	1994	59	4771	3050	6930	124	954	0.200	0.377	2.678			
FEB	1936	1994	59	3906	2400	5649	93	713	0.183	0.479	3.142			
MAR	1936	1994	59	3460	2120	6050	88	677	0.196	1.106	5.655			
APR	1936	1994	59	3539	2400	6131	103	791	0.224	1.128	4.458			
MAY	1936	1994	59	14933	5260	26041	625	4802	0.322	0.270	2.922			
JUN	1936	1994	59	32918	21900	39747	437	3355	0.102	-0.720	3.974			
JUL	1936	1994	59	30022	14400	42587	720	5530	0.184	-0.482	3.478			
AUG	1936	1994	59	22382	9290	43423	1172	8999	0.402	0.380	2.278			
SEP	1936	1994	59	14057	6640	33080	749	5756	0.410	1.466	5.084			
OCT	1936	1994	59	10381	5860	20000	314	2408	0.232	1.164	6.773			
NOV	1936	1994	59	6199	3350	10400	229	1762	0.284	0.354	2.590			
DEC	1936	1994	59	5438	3390	7866	152	1168	0.215	0.143	2.125			
MTHS	1936	1994	59	12667	2120	43423	407	10839	0.856	1.066	2.766			
ANNL	1936	1994	59	12667	8791	17812	252	1937	0.153	0.278	2.856			

The River Ob, with a basin size of approximately 2950000 km, has a mean discharge of 12667 m³/s (annual maximum 17812 m³/s, minimum 8791 m³/s) and a mean discharge per unit area of $5.1 \text{ l/}(\text{s*km}^2)$.

Mean annual maximum discharge is observed in June (32918 m³/s), minimum in March (3460 m³/s), 3 months earlier. Absolute maximum and minimum discharge occur in the same months: June (39747 m³/s) and March (2120 m³/s).

The annual series shows little variability with slightly right-sided skew and slight platykurtic kurtosis.

The monthly series' variability is mostly small, only elevated in May, August and September (32.2/40.2/41.0 % variation coefficient).

More or less small to medium right-sided skew, together with platykurtic distributions are observed in January – February, May, August, November – December.

In late winter (March – April) strong right-sided skew and high kurtosis are combined as is the case in early winter (September – October), pointing at high variability with especially relatively high floods.

In June and July, however, the distributions are somewhat leptokurtic, but distinctly skewed to the left side, i.e. some relatively small values occur.

Basic Descriptive Statistics														
River:					(DRINOCO)							
Station:					Pue	nte Angost	tura							
GRDC#:		3206720												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1925	1989	65	13123	8635	19656	300	2423	0.185	0.437	2.832			
FEB	1925	1989	65	8051	4599	13944	255	2060	0.256	0.726	3.222			
MAR	1925	1989	65	7127	3951	14308	265	2140	0.300	0.941	3.800			
APR	1925	1989	65	8897	3398	15988	331	2669	0.300	0.466	2.851			
MAY	1925	1989	65	19540	5274	32986	727	5862	0.300	0.215	2.978			
JUN	1925	1989	65	34684	16936	48618	944	7613	0.220	-0.101	2.810			
JUL	1925	1989	65	53181	30666	71436	1101	8876	0.167	-0.332	2.971			
AUG	1925	1989	65	65331	43964	85963	1141	9198	0.141	-0.110	2.976			
SEP	1925	1989	65	60149	44660	73904	869	7007	0.116	-0.207	2.587			
OCT	1925	1989	65	45868	29857	58335	794	6403	0.140	-0.190	2.604			
NOV	1925	1989	65	30524	22595	47475	635	5116	0.168	0.960	4.297			
DEC	1925	1989	65	21225	15076	33824	461	3716	0.175	0.880	4.535			
MTHS	1925	1989	65	30642	3398	85963	752	21003	0.685	0.521	2.020			
ANNL	1925	1989	65	30642	21245	37109	435	3507	0.114	-0.165	2.820			

7.3.2.3 South America (GRDC Region #3)

The River Orinoco, with its basin of 836000 km² size, has a mean discharge of 30642 m³/s (annual maximum 37109 m³/s, minimum 21245 m³/s) and a high mean discharge per unit area of 36.6 $l/(s*km^2)$.

Mean monthly discharge culminates in August (65331 m³/s), the minimum is reached in March (7127 m³/s). Absolute monthly discharge ranges form a maximum of 85963 m³/s in August to a minimum of 3398 m³/s in April.

The annual series has small variability with slightly negative skew and platykurtic distribution.

The monthly series is of small variability, culminating between March and May.

Negative skew prevails between June and October, combined with normal or slightly platykurtic distribution. January, April, May show small to medium skew to the right, with small platykurtic distribution. February, March and November – December are periods with strong right-sided skew with leptokurtic distribution.

	Basic Descriptive Statistics													
River:						PARANA								
Station:					(Corrientes	1							
GRDC#:		3265300												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1905	1982	78	18211	7444	33800	621	5486	0.301	0.397	3.304			
FEB	1905	1982	78	20917	10800	34000	629	5551	0.265	0.420	2.819			
MAR	1905	1982	78	21096	10500	36600	646	5709	0.271	0.473	3.247			
APR	1905	1982	78	19210	11000	30600	532	4701	0.245	0.454	2.223			
MAY	1905	1982	78	16699	9844	31700	510	4504	0.270	1.042	4.231			
JUN	1905	1982	78	16795	7955	40300	617	5450	0.324	1.375	6.521			
JUL	1905	1982	78	15073	6706	33400	554	4894	0.325	1.088	4.769			
AUG	1905	1982	78	12483	5348	25200	477	4214	0.338	1.095	4.526			
SEP	1905	1982	78	12001	4619	26700	471	4156	0.346	0.803	3.902			
OCT	1905	1982	78	13946	4092	29100	581	5127	0.368	0.668	3.154			
NOV	1905	1982	78	14450	6136	25400	524	4627	0.320	0.209	2.637			
DEC	1905	1982	78	15413	6562	41000	680	6007	0.390	1.300	6.188			
MTHS	1905	1982	78	16358	4092	41000	190	5816	0.356	0.690	3.534			
ANNL	1905	1982	78	16358	9413	25583	390	3447	0.211	0.347	2.846			

The River Paraná with a basin of 195000 km² size has a mean discharge of 16358 m³/s (annual maximum 25583 m³/s, minimum 9413 m³/s) and a mean discharge per unit area of 8.3 $l/(s*km^2)$.

Mean monthly maximum is reached in March (21096 m³/s), its minimum in September (12001 m³/s), absolute maximum is reached in December (41000 m³/s), the respective minimum in October (4092 m³/s).

The annual series' variability is small, with slightly right-sided skew and leptokurtic distribution.

The monthly series' variability is around 30 % variation coefficient, culminating in October (36,8 %) and its minimum in April (24,5 %).

With the exception of small skew in November, all months show medium to strong right-sided skew. The kurtosis for January – April and November is about normal or platykurtic (April, November).

While strongly leptokurtic in the rest of the year (December, May – September), especially in June and December, pointing at relatively extremely high values, confirmed by almost the same absolute maximum discharge (40300 and 4100 m³/s, respectively).

Basic Descriptive Statistics														
River:					M	ISSISSIP	PI							
Station:					Vic	ksburg, M	iss.							
GRDC#:		4127800												
Time	Begin	Begin End # Mean Min Max SE Std CF CF CF												
interval	year	year	year				Mean	Dev	Var	Skw	Kur			
JAN	1969	1982	14	19677	4930	34900	2137	7996	0.406	0.078	4.001			
FEB	1969	1982	14	21690	7180	39100	2592	9698	0.447	0.387	2.756			
MAR	1969	1982	14	23833	3410	38500	2481	9281	0.389	-0.375	4.119			
APR	1969	1982	14	29037	12421	50200	2983	11160	0.384	0.522	3.080			
MAY	1969	1982	14	25473	12600	52400	2869	10735	0.421	1.199	5.187			
JUN	1969	1982	14	19477	7330	35200	2161	8088	0.415	0.657	3.541			
JUL	1969	1982	14	14412	10052	20920	905	3385	0.235	0.478	2.978			
AUG	1969	1982	14	11229	7870	16600	633	2368	0.211	0.784	4.119			
SEP	1969	1982	14	10090	5560	17100	746	2792	0.277	1.147	5.781			
OCT	1969	1982	14	10336	7170	15500	740	2768	0.268	0.612	2.726			
NOV	1969	1982	14	12344	7265	23100	1183	4427	0.359	1.115	4.714			
DEC	1969	1982	14	18436	7790	32573	2246	8403	0.456	0.405	2.494			
MTHS	1969	1982	14	18003	3410	52400	730	9456	0.525	1.138	4.122			
ANNL	1969	1982	14	18003	12311	27807	1241	4645	0.258	0.653	3.343			

7.3.2.4 North America (GRDC Region #4)

The River Mississippi, with about 2964000 km² basin size, has a mean discharge of 18003 m³/s (annual maximum 27807 m³/s, minimum 12311 m³/s) and a mean discharge per unit area of 6.1 l/(s*km²).

Mean monthly discharge reaches its maximum in April (29037 m³/s), its minimum in September (10090 m³/s), the respective absolute maximum and minimum are observed in May (52400 m³/s) and March (3410 m³/s), i.e. at the end of winter.

The annual series shows still small variability, though marked right-sided skew and some leptokurtic distribution.

The monthly series have small variability from mid-summer up to early autumn (July – October), and a stronger one during the rest of the year, but not exceeding the 46 % variation coefficient of December.

The skewness and kurtosis show complex behaviour:

.

All months have positive, right-sided skew, some of them very distinct ones, with the exception of the months of January (no skew) and March (negative skew).

Nevertheless, in winter (December – March), mid-summer (June – July) and mid-autumn (October) the skewness and kurtosis coefficients show generally normal or slightly right-sided skew combined with moderate platykurtic, normal or moderate leptokurtic distribution. Outstanding right-sided skew with respective leptokurtic distributions are observed in spring (May), early autumn (September), and early winter (November), pointing at relatively high floods in these months

Т	Trends of Annual and Monthly Series (Programme TREND1)											
River:			ANGERMA	N								
Total period:			1965-1992									
Time interval	Mean	StdDev	Slope	Intercept	R							
JAN	487.04	75.51	3.66	-6755.01	0.405							
FEB	501.75	79.02	5.16	-9702.09	0.545							
MAR	462.43	88.24	4.97	-9361.85	0.470							
APR	446.11	138.19	6.76	-12926.37	0.409							
MAY	702.75	183.07	2.31	-3876.39	0.106							
JUN	571.86	171.02	1.12	-1635.14	0.055							
JUL	436.61	172.92	3.38	-6241.24	0.164							
AUG	420.57	192.43	9.78	-18928.01	0.425							
SEP	415.50	170.68	10.56	-20471.92	0.516							
OCT	458.43	142.7	8.13	-15632.72	0.476							
NOV	497.96	86.48	3.79	-6992.07	0.366							
DEC	471.50	62.75	3.19	-5848.44	0.426							
ANNL	489.38	79.32	5.23	-9864.27	0.550							

7.4 Trends of Annual and Monthly Series

Trends of Annual and Monthly Series (Programme TREND1)											
River:			BENUE								
Total period:			1960-1989								
Time interval	Mean	StdDev	Slope	Intercept	R						
JAN	4.87	3.79	0.09	-180.50	0.222						
FEB	3.33	2.96	0.08	-161.83	0.253						
MAR	2.57	2.43	0.11	-211.36	0.399						
APR	1.83	2.07	0.12	-239.32	0.527						
MAY	3.90	3.66	0.17	-337.41	0.422						
JUN	6.53	3.40	0.03	-47.06	0.072						
JUL	22.07	10.41	-0.57	1141.32	-0.486						
AUG	51.17	24.39	-0.87	1765.62	-0.319						
SEP	88.77	43.90	-2.08	4188.44	-0.423						
OCT	39.83	20.80	-1.03	2081.10	-0.444						
NOV	30.00	38.44	-1.03	2062.04	-0.240						
DEC	8.27	6.54	0.07	-137.57	0.101						
ANNL	21.93	8.80	-0.41	826.96	-0.414						

Trends of Annual and Monthly Series (Programme TREND1)					
River:	CHANGJIANG				
Total period:	1947-1986				
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	10164.42	2949.39	-84.16	175664.59	-0.334
FEB	11104.75	2679.91	-49.04	107542.57	-0.214
MAR	15046.55	4403.67	-0.28	15594.45	-0.001
APR	23266.68	5178.77	28.95	-33672.34	0.065
MAY	34497.43	7735.15	-119.14	268779.34	-0.180
JUN	40482.05	8263.97	-88.22	213974.94	-0.125
JUL	49232.50	9483.92	-41.23	130309.12	-0.051
AUG	43777.50	10637.87	-300.14	634004.19	-0.330
SEP	40570.00	9683.17	-287.15	605247.00	-0.347
OCT	34837.50	8450.24	-149.28	328392.03	-0.207
NOV	24107.50	6275.45	-136.73	292979.34	-0.255
DEC	14579.25	3758.47	-43.41	99952.28	-0.135
ANNL	28472.18	4461.38	-105.82	236563.94	-0.277

Trends of Annual and Monthly Series (Programme TREND1)					
River:	EBRO				
Total period:	1953-1983				
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	690.07	378.22	-11.79	23900.53	-0.284
FEB	754.80	430.29	-6.16	12884.48	-0.130
MAR	719.83	319.53	-11.23	22822.79	-0.320
APR	610.11	315.91	-5.48	11397.58	-0.158
MAY	501.91	307.61	-2.97	6353.32	-0.088
JUN	481.72	268.74	-1.16	2770.13	-0.039
JUL	203.07	90.75	2.25	-4231.63	0.226
AUG	130.03	87.55	1.17	-2168.63	0.121
SEP	193.02	110.10	2.24	-4211.06	0.185
OCT	306.80	235.38	-4.49	9149.22	-0.174
NOV	465.64	316.09	-5.24	10784.62	-0.151
DEC	577.34	403.70	-12.36	24899.99	-0.278
ANNL	469.53	146.99	-4.60	9529.28	-0.285

Trends of Annual and Monthly Series (Programme TREND1)					
River:	EMS				
Total period:	1980-1984				
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	150.80	45.14	7.90	-15507.00	0.341
FEB	154.40	25.66	2.80	-5395.20	0.214
MAR	132.80	74.91	-12.10	24115.00	-0.315
APR	86.00	28.35	-2.10	4248.20	-0.146
MAY	72.20	34.64	17.70	-35009.20	0.878
JUN	51.60	18.77	10.70	-21155.80	0.944
JUL	68.20	47.28	-21.90	43474.00	-0.817
AUG	33.20	13.27	-5.80	11528.80	-0.781
SEP	33.80	12.21	-1.60	3205.00	-0.257
OCT	57.80	38.54	11.30	-22338.80	0.555
NOV	78.40	36.43	-3.10	6222.60	-0.168
DEC	113.40	40.71	-14.60	29050.60	-0.663
ANNL	86.05	17.77	-0.90	1869.85	-0.100

Trends of Annual and Monthly Series (Programme TREND1)							
River:	GARONNE						
Total period:	1921-1979						
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	877.71	497.26	1.25	-1565.89	0.043		
FEB	1009.59	526.14	5.94	-10577.81	0.194		
MAR	907.30	528.47	-3.59	7915.88	-0.117		
APR	856.04	428.84	-3.44	7557.13	-0.138		
MAY	804.27	379.17	-0.65	2067.72	-0.029		
JUN	568.35	282.45	0.95	-1285.29	0.058		
JUL	294.57	182.39	0.07	153.00	0.007		
AUG	185.30	98.70	0.02	138.80	0.004		
SEP	203.96	118.66	0.57	-899.54	0.082		
OCT	289.16	187.56	1.23	-2115.20	0.113		
NOV	479.75	271.23	-1.34	3102.17	-0.085		
DEC	826.41	614.82	-0.42	1650.17	-0.012		
ANNL	608.53	182.46	0.05	511.76	0.005		
Trends of Annual and Monthly Series (Programme TREND1)							
--	---------	--------	-----------	-----------	--------	--	--
River:		GLOMA					
Total period:			1902-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	223.94	111.30	2.61	-4843.39	0.565		
FEB	185.80	101.17	2.33	-4346.66	0.556		
MAR	196.93	99.36	1.83	-3364.97	0.445		
APR	490.84	219.85	0.41	-313.53	0.045		
MAY	1574.24	501.95	-3.17	7741.29	-0.152		
JUN	1489.57	420.26	-3.27	7838.43	-0.187		
JUL	1044.00	343.39	-2.49	5873.28	-0.174		
AUG	817.71	326.68	-3.88	8350.84	-0.286		
SEP	682.67	327.35	-1.21	3035.26	-0.089		
OCT	612.04	278.65	2.07	-3402.39	0.179		
NOV	455.71	210.96	2.06	-3545.71	0.235		
DEC	298.04	144.64	2.51	-4579.00	0.418		
ANNL	672.62	108.35	-0.02	703.62	-0.004		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		GUADALQUIVIR					
Total period:			1952-1993				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	254.13	368.55	-7.40	14843.82	-0.246		
FEB	285.52	379.46	-7.19	14473.94	-0.233		
MAR	250.13	334.16	-10.42	20811.14	-0.383		
APR	139.28	162.47	-7.06	14061.86	-0.533		
MAY	73.56	74.00	-2.31	4624.18	-0.382		
JUN	45.62	34.28	-0.74	1512.56	-0.266		
JUL	32.42	14.15	-0.30	615.49	-0.256		
AUG	33.32	12.64	-0.27	563.08	-0.261		
SEP	33.40	21.98	-0.53	1085.66	-0.298		
OCT	44.99	54.21	-1.48	2957.21	-0.334		
NOV	84.55	107.23	-2.30	4622.30	-0.263		
DEC	171.72	243.98	-5.35	10718.38	-0.269		
ANNL	120.72	112.40	-3.78	7574.14	-0.412		

Trends of Annual and Monthly Series (Programme TREND1)								
River:		JUCAR						
Total period:			1925-1981					
Time interval	Mean	StdDev	Slope	Intercept	R			
JAN	54.33	26.19	-0.65	1321.55	-0.411			
FEB	60.88	33.94	-0.83	1688.83	-0.408			
MAR	61.49	34.80	-0.92	1864.93	-0.440			
APR	52.54	23.87	-0.72	1451.34	-0.498			
MAY	51.82	21.88	-0.56	1152.19	-0.427			
JUN	47.85	15.41	-0.48	989.21	-0.519			
JUL	43.20	9.95	-0.11	260.60	-0.186			
AUG	40.44	8.73	-0.03	102.84	-0.061			
SEP	40.84	14.92	-0.27	565.44	-0.299			
OCT	41.93	15.48	-0.22	468.14	-0.234			
NOV	44.30	21.60	-0.43	892.61	-0.334			
DEC	47.76	18.11	-0.59	1209.76	-0.545			
ANNL	48.95	16.89	-0.49	997.29	-0.477			

Trends of Annual and Monthly Series (Programme TREND1)							
River:		LABE					
Total period:			1965-1988				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	935.50	483.13	1.24	-1515.36	0.019		
FEB	1014.58	360.05	3.01	-4942.42	0.061		
MAR	1054.46	384.38	2.90	-4667.94	0.055		
APR	1231.75	521.36	11.58	-21649.25	0.161		
MAY	930.04	374.19	-14.61	29811.86	-0.282		
JUN	734.46	319.71	-11.12	22719.15	-0.252		
JUL	575.54	235.42	-9.50	19353.15	-0.292		
AUG	533.58	248.59	0.67	-800.12	0.020		
SEP	492.79	212.27	-4.84	10068.50	-0.165		
OCT	513.88	180.76	-1.71	3890.25	-0.068		
NOV	606.29	297.61	-3.90	8322.38	-0.095		
DEC	783.21	400.42	-2.69	6098.27	-0.049		
ANNL	783.84	197.06	-2.42	5557.37	-0.089		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		LENA					
Total period:			1936-1994				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	2777.19	651.92	18.60	-33773.23	0.490		
FEB	2131.01	610.44	23.26	-43575.67	0.654		
MAR	1656.07	572.21	24.92	-47314.78	0.748		
APR	1350.89	481.18	20.78	-39490.01	0.742		
MAY	6260.32	7158.83	83.16	-157141.09	0.200		
JUN	72267.55	14057.21	-104.33	277283.72	-0.127		
JUL	39536.05	8407.01	75.11	-108048.00	0.153		
AUG	27254.27	6426.82	29.51	-30727.81	0.079		
SEP	23848.44	6278.55	-45.39	113039.23	-0.124		
OCT	13624.43	3857.45	-24.48	61722.76	-0.109		
NOV	3498.93	1092.25	13.37	-22770.09	0.210		
DEC	2926.96	766.96	15.29	-27127.26	0.343		
ANNL	16427.68	1839.05	10.82	-4826.85	0.101		

Trends of Annual and Monthly Series (Programme TREND1)							
River:	-	LOIRE					
Total period:			1863-1979				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	1397.34	748.90	1.89	-2242.87	0.086		
FEB	1518.13	829.32	5.92	-9860.55	0.242		
MAR	1375.66	681.77	1.80	-2081.12	0.090		
APR	1112.55	596.54	1.32	-1420.05	0.075		
MAY	805.72	429.57	1.48	-2037.64	0.117		
JUN	576.36	332.84	1.27	-1864.90	0.130		
JUL	357.58	208.80	0.51	-627.09	0.083		
AUG	259.11	159.15	0.61	-903.23	0.129		
SEP	268.20	158.36	0.88	-1416.18	0.188		
OCT	417.49	276.54	-0.75	1855.52	-0.092		
NOV	812.65	629.80	-0.67	2091.34	-0.036		
DEC	1156.32	767.60	0.39	413.05	0.017		
ANNL	838.09	278.12	1.22	-1507.81	0.149		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		MEKONG					
Total period:			1982-1991				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	2814.30	361.21	-52.73	107569.15	-0.467		
FEB	1972.30	206.00	-33.28	68080.70	-0.516		
MAR	1939.10	244.47	-16.32	34361.27	-0.216		
APR	1841.60	217.77	-26.10	53683.24	-0.385		
MAY	2478.40	397.71	-57.03	115769.11	-0.459		
JUN	6900.20	1856.58	225.70	-441446.81	0.391		
JUL	14566.30	3596.29	472.22	-923507.13	0.421		
AUG	25830.90	4200.69	561.41	-1089414.00	0.429		
SEP	23888.10	2435.08	-15.99	55660.09	-0.021		
OCT	16816.70	2074.35	-167.41	349380.91	-0.261		
NOV	8290.70	1199.57	-41.93	91591.28	-0.113		
DEC	4403.90	525.63	-49.51	102753.72	-0.304		
ANNL	9311.88	1025.25	66.59	-122959.90	0.210		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		MISSISSIPPI					
Total period:			1969-1982				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	19677.43	7996.21	-556.48	1119010.63	-0.303		
FEB	21690.14	9697.95	-791.03	1584375.75	-0.355		
MAR	23833.07	9281.33	633.53	-1227709.00	0.297		
APR	29037.07	11159.91	213.19	-392117.81	0.084		
MAY	25472.57	10734.95	-800.33	1606515.13	-0.325		
JUN	19476.86	8087.50	268.85	-511633.00	0.145		
JUL	14412.07	3384.89	-27.04	67828.73	-0.035		
AUG	11229.21	2368.12	150.92	-286906.31	0.278		
SEP	10089.64	2791.78	279.59	-542238.38	0.435		
OCT	10335.64	2767.69	-244.31	492961.13	-0.384		
NOV	12344.00	4426.64	-365.42	734239.44	-0.359		
DEC	18436.21	8402.87	186.55	-350096.59	0.097		
ANNL	18002.83	4644.6	-87.67	191185.86	-0.083		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		NILE					
Total period:			1973-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	1238.75	231.69	49.73	-97153.58	0.791		
FEB	1035.25	105.71	14.60	-27860.54	0.519		
MAR	1125.75	98.44	7.23	-13187.25	0.279		
APR	1110.17	131.29	11.31	-21262.10	0.326		
MAY	1169.75	94.23	2.19	-3167.73	0.089		
JUN	1542.17	56.75	0.84	-118.11	0.056		
JUL	1742.08	82.33	13.47	-24898.49	0.611		
AUG	1559.50	53.78	5.36	-9052.45	0.377		
SEP	1190.58	77.06	15.31	-29102.60	0.736		
OCT	1102.58	100.07	18.59	-35679.53	0.690		
NOV	1075.42	89.09	13.96	-26547.49	0.586		
DEC	1123.92	128.83	21.44	-41289.31	0.621		
ANNL	1251.33	81.61	14.50	-27443.26	0.662		

Trends of Annual and Monthly Series (Programme TREND1)						
River:		NORTHERM	N DVINA (SEVE	RNAYA DVINA)	
Total period:			1882-1985			
Time interval	Mean	StdDev	Slope	Intercept	R	
JAN	1030.00	329.18	-0.04	1111.32	-0.004	
FEB	822.73	258.32	-0.21	1224.08	-0.024	
MAR	716.14	185.97	-0.96	2576.49	-0.156	
APR	2329.17	2178.43	4.86	-7070.96	0.067	
MAY	13698.56	3294.75	-7.99	29144.59	-0.073	
JUN	7079.04	2977.25	-14.07	34292.85	-0.143	
JUL	2957.31	1050.71	-5.69	13962.77	-0.163	
AUG	2159.30	1070.96	-8.67	18926.84	-0.244	
SEP	2306.29	1254.02	-12.67	26800.25	-0.305	
OCT	2903.92	1451.10	-8.10	18566.08	-0.168	
NOV	2380.26	1445.13	-2.29	6801.70	-0.048	
DEC	1402.12	612.98	-0.01	1429.06	-0.001	
ANNL	3315.40	647.46	-4.65	12313.75	-0.217	

Trends of Annual and Monthly Series (Programme TREND1)							
River:		OB					
Total period:			1936-1994				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	4771.39	953.92	21.40	-37279.26	0.385		
FEB	3906.09	713.38	17.11	-29713.61	0.412		
MAR	3459.73	676.99	24.74	-45147.79	0.628		
APR	3538.74	791.29	19.82	-35414.64	0.430		
MAY	14933.17	4802.29	7.92	-625.59	0.028		
JUN	32918.14	3355.14	22.07	-10451.06	0.113		
JUL	30021.76	5530.05	13.23	4019.33	0.041		
AUG	22381.98	8998.54	-72.54	164924.53	-0.138		
SEP	14056.69	5756.25	-42.61	97790.63	-0.127		
OCT	10380.80	2408.46	-4.78	19763.76	-0.034		
NOV	6199.26	1761.76	12.53	-18417.13	0.122		
DEC	5437.85	1168.47	20.79	-35405.66	0.306		
ANNL	12667.13	1937.17	3.31	6170.29	0.029		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		ORINOCO					
Total period:			1925-1989		_		
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	13122.91	2422.57	8.85	-4189.61	0.069		
FEB	8050.51	2059.70	9.84	-11196.60	0.090		
MAR	7126.77	2140.18	25.39	-42566.57	0.224		
APR	8896.97	2669.21	-5.95	20543.09	-0.042		
MAY	19540.20	5861.81	-8.47	36116.28	-0.027		
JUN	34683.71	7613.23	-40.79	114505.02	-0.101		
JUL	53181.14	8875.62	-2.94	58933.08	-0.006		
AUG	65331.00	9197.84	33.56	-338.41	0.069		
SEP	60148.68	7007.14	76.41	-89387.85	0.206		
OCT	45868.48	6402.52	136.66	-221581.00	0.404		
NOV	30523.68	5115.74	98.61	-162453.80	0.364		
DEC	21225.48	3715.87	47.67	-72059.10	0.243		
ANNL	30641.63	3506.51	31.57	-31139.65	0.170		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		PARANA					
Total period:			1905-1982				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	18210.69	5486.36	18.36	-17477.41	0.076		
FEB	20916.67	5551.38	10.30	894.04	0.042		
MAR	21096.15	5708.70	-15.17	50575.89	-0.060		
APR	19210.26	4700.97	-20.60	59245.68	-0.099		
MAY	16698.64	4503.57	-29.41	73858.96	-0.148		
JUN	16795.09	5449.81	-41.46	97380.55	-0.172		
JUL	15072.81	4893.95	1.57	12028.37	0.007		
AUG	12482.88	4213.96	17.46	-21453.91	0.094		
SEP	12000.69	4156.10	24.16	-34952.14	0.132		
OCT	13946.45	5127.20	3.97	6227.38	0.018		
NOV	14449.90	4627.50	21.54	-27420.23	0.105		
DEC	15412.65	6006.68	36.57	-55670.63	0.138		
ANNL	16357.74	3446.89	2.27	11936.38	0.015		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		PECHORA					
Total period:			1932-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	707.45	144.66	6.21	-11461.45	0.663		
FEB	559.58	131.88	6.70	-12565.11	0.785		
MAR	480.81	124.90	6.40	-12052.00	0.791		
APR	795.55	783.72	4.12	-7277.69	0.081		
MAY	8936.42	4308.50	30.18	-50155.65	0.108		
JUN	13760.38	4749.66	-18.31	49617.57	-0.060		
JUL	4786.79	2012.03	24.14	-42470.76	0.185		
AUG	2291.70	949.34	5.79	-9037.61	0.094		
SEP	2953.08	1314.16	21.48	-39111.09	0.252		
OCT	3029.42	1216.35	-13.85	30155.66	-0.176		
NOV	1558.72	689.23	-0.68	2898.78	-0.015		
DEC	998.26	229.71	4.01	-6852.21	0.270		
ANNL	3404.85	448.29	6.35	-9025.96	0.219		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		RHEIN					
Total period:		-	1930-1996				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	2639.21	1173.80	7.32	-11728.65	0.122		
FEB	2835.31	1192.35	4.84	-6663.44	0.079		
MAR	2682.57	1038.97	6.85	-10756.52	0.128		
APR	2503.21	833.88	0.87	787.68	0.020		
MAY	2287.55	785.90	8.90	-15187.83	0.221		
JUN	2301.21	627.75	4.65	-6817.60	0.144		
JUL	2156.49	667.63	-3.83	9665.92	-0.112		
AUG	1883.51	556.64	-4.07	9867.12	-0.142		
SEP	1697.33	565.24	-2.42	6442.90	-0.083		
OCT	1771.04	723.30	-1.65	5002.50	-0.044		
NOV	1990.81	915.87	-0.58	3138.23	-0.012		
DEC	2613.36	1336.05	15.44	-27689.68	0.225		
ANNL	2280.13	492.79	3.03	-3661.61	0.120		

Trends of Annual and Monthly Series (Programme TREND1)								
River:		SEINE						
Total period:			1971-1977					
Time interval	Mean	StdDev	Slope	Intercept	R			
JAN	390.14	152.07	26.32	-51568.36	0.414			
FEB	591.00	191.45	64.21	-126168.00	0.768			
MAR	433.00	111.72	34.86	-68375.00	0.720			
APR	380.57	133.29	22.71	-44457.43	0.408			
MAY	307.43	85.39	14.64	-28597.57	0.410			
JUN	244.43	67.46	-0.54	1301.93	-0.019			
JUL	207.86	53.38	2.79	-5291.14	0.127			
AUG	203.14	72.08	-2.57	5279.14	-0.087			
SEP	202.29	41.12	2.32	-4380.21	0.137			
OCT	242.29	91.55	5.14	-9909.71	0.136			
NOV	346.57	146.26	10.54	-20450.93	0.175			
DEC	454.43	155.05	31.11	-60951.07	0.477			
ANNL	333.60	74.88	17.63	-34464.03	0.556			

Trends of Annual and Monthly Series (Programme TREND1)							
River:		SEVERN (sub-series #1)					
Total period:			<u>1965-1972</u>				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	120.75	36.49	-3.83	7666.67	-0.281		
FEB	98.38	42.96	2.99	-5783.69	0.187		
MAR	81.50	15.03	-1.81	3643.55	-0.322		
APR	64.25	27.74	0.64	-1201.21	0.062		
MAY	61.50	35.93	-3.86	7654.29	-0.287		
JUN	34.38	11.04	0.54	-1020.18	0.131		
JUL	29.00	26.76	-0.76	1528.81	-0.077		
AUG	27.88	5.77	1.35	-2620.23	0.610		
SEP	35.88	22.43	-6.25	12339.00	-0.719		
OCT	53.63	45.58	-8.85	17465.48	-0.512		
NOV	78.63	13.63	-3.46	6898.07	-0.661		
DEC	132.13	79.52	-21.80	43040.74	-0.708		
ANNL	68.16	10.75	-3.76	7467.61	-0.880		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		SEVERN (sub-series #2)					
Total period:			1976-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	121.44	33.47	6.70	-13144.56	0.580		
FEB	107.78	51.31	-4.07	8159.78	-0.234		
MAR	99.11	51.04	-0.23	561.11	-0.014		
APR	50.44	25.36	0.27	-477.56	0.031		
MAY	39.44	26.77	0.77	-1478.56	0.085		
JUN	27.00	10.5	1.05	-2052.00	0.295		
JUL	14.33	5.29	0.33	-645.67	0.186		
AUG	17.67	9.58	-0.13	281.67	-0.041		
SEP	25.78	8.09	0.97	-1888.22	0.352		
OCT	63.22	33.13	0.53	-992.78	0.048		
NOV	92.78	38.64	2.68	-5220.22	0.205		
DEC	118.11	31.71	0.65	-1168.89	0.061		
ANNL	64.76	10.24	0.79	-1505.49	0.229		

Trends of Annual and Monthly Series (Programme TREND1)								
River:		SHANNON						
Total period:			1973-1979					
Time interval	Mean	StdDev	Slope	Intercept	R			
JAN	311.14	71.82	-5.04	10261.71	-0.170			
FEB	318.29	72.49	-12.04	24100.86	-0.398			
MAR	215.43	59.60	20.89	-41068.86	0.798			
APR	151.29	59.34	24.07	-47413.86	0.902			
MAY	104.86	48.39	17.36	-34192.86	0.814			
JUN	57.29	52.48	12.75	-25136.71	0.572			
JUL	43.14	15.93	0.46	-874.29	0.071			
AUG	62.86	24.57	-5.89	11707.14	-0.565			
SEP	104.57	88.71	-17.46	34614.00	-0.469			
OCT	135.29	30.83	-8.61	17143.00	-0.651			
NOV	240.00	72.02	12.36	-24177.71	0.411			
DEC	328.00	91.14	24.57	-48225.14	0.631			
ANNL	172.68	22.91	5.29	-10271.89	0.545			

Trends of Annual and Monthly Series (Programme TREND1)							
River:		TANA (sub-series #1)					
Total period:			1912-1943				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	55.06	7.19	-0.10	253.61	-0.134		
FEB	47.81	6.12	-0.20	437.83	-0.310		
MAR	44.88	4.78	-0.13	304.89	-0.265		
APR	48.09	6.02	-0.04	117.69	-0.056		
MAY	410.09	225.72	0.70	-941.21	0.029		
JUN	561.97	303.32	-11.42	22567.48	-0.353		
JUL	197.41	96.36	-0.98	2080.04	-0.095		
AUG	155.75	74.19	1.19	-2140.58	0.151		
SEP	154.31	70.93	-0.16	465.91	-0.021		
OCT	134.09	42.11	0.35	-541.73	0.078		
NOV	98.31	31.97	0.96	-1752.17	0.282		
DEC	68.78	11.82	0.25	-412.03	0.198		
ANNL	164.71	31.41	-0.80	1703.31	-0.238		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		TANA (sub-series #2)					
Total period:			1947-1987				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	52.51	7.98	-0.15	350.65	-0.227		
FEB	45.15	5.84	-0.03	110.94	-0.069		
MAR	41.51	5.07	0.03	-18.46	0.072		
APR	50.85	22.80	0.17	-275.72	0.087		
MAY	466.34	207.95	5.41	-10174.65	0.312		
JUN	517.27	243.72	-0.07	653.66	-0.003		
JUL	199.71	87.93	-0.36	902.89	-0.049		
AUG	164.56	68.16	-0.02	194.72	-0.003		
SEP	162.80	77.84	0.35	-516.05	0.053		
OCT	144.1	53.77	0.42	-680.40	0.093		
NOV	94.32	22.17	-0.53	1136.76	-0.286		
DEC	65.83	12.21	-0.20	468.14	-0.201		
ANNL	167.08	29.59	0.42	-653.96	0.169		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		ТАУ					
Total period:			1980-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	300.60	110.91	46.40	-91664.20	0.754		
FEB	227.20	37.77	2.00	-3736.80	0.105		
MAR	242.80	47.19	8.40	-16406.00	0.346		
APR	143.60	39.90	19.10	-37712.60	0.838		
MAY	102.80	73.82	21.10	-41717.40	0.542		
JUN	74.60	32.14	2.60	-5078.60	0.159		
JUL	47.20	14.81	-8.60	17092.40	-0.954		
AUG	57.60	35.32	-18.70	37121.00	-0.900		
SEP	150.00	64.22	-34.60	68727.20	-0.910		
OCT	259.20	86.89	6.60	-12822.00	0.150		
NOV	287.80	120.41	16.80	-33009.80	0.273		
DEC	267.20	74.47	23.90	-47102.60	0.602		
ANNL	180.05	19.32	7.08	-13859.11	0.676		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		TEJO					
Total period:			1976-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	628.56	517.00	-50.13	99892.55	-0.286		
FEB	919.00	1287.75	-180.38	358078.00	-0.411		
MAR	512.44	664.93	-110.82	219929.44	-0.487		
APR	290.89	348.76	-40.57	80612.89	-0.342		
MAY	220.11	187.77	-11.18	22363.11	-0.176		
JUN	177.11	135.35	-10.62	21198.11	-0.232		
JUL	143.89	122.82	-16.05	31922.89	-0.384		
AUG	133.22	92.24	-9.25	18448.22	-0.296		
SEP	125.89	53.64	-8.43	16823.89	-0.460		
OCT	199.89	179.24	-9.33	18679.89	-0.154		
NOV	440.33	365.61	-25.53	50996.33	-0.207		
DEC	658.89	454.68	-96.50	191728.89	-0.613		
ANNL	370.85	268.71	-47.40	94222.85	-0.514		

Trends of Annual and Monthly Series (Programme TREND1)							
River:		THAMES					
Total period:			1965-1984				
Time interval	Mean	StdDev	Slope	Intercept	R		
JAN	137.70	50.63	-0.95	2017.19	-0.114		
FEB	136.35	59.52	-1.49	3080.28	-0.152		
MAR	126.15	52.28	1.15	-2152.69	0.134		
APR	90.80	38.22	0.22	-345.67	0.035		
MAY	76.50	36.17	-0.33	723.78	-0.055		
JUN	53.95	31.05	-0.75	1540.02	-0.148		
JUL	35.60	18.46	-1.88	3738.16	-0.612		
AUG	33.55	17.76	-1.53	3045.78	-0.519		
SEP	38.10	29.41	-2.34	4649.23	-0.481		
OCT	55.35	35.74	-2.31	4623.42	-0.393		
NOV	81.45	49.43	-2.43	4887.06	-0.299		
DEC	113.25	45.75	-2.01	4081.55	-0.267		
ANNL	81.56	22.22	-1.22	2490.68	-0.333		

Trends of Annual and Monthly Series (Programme TREND1)						
River:	VAENERN-GOETA					
Total period:	1807-1992					
Time interval	Mean	StdDev	Slope	Intercept	R	
JAN	539.84	132.97	0.36	-148.75	0.147	
FEB	537.17	133.55	0.55	-515.45	0.223	
MAR	532.67	134.32	0.69	-774.52	0.276	
APR	532.28	126.64	0.62	-646.11	0.264	
MAY	542.72	123.12	-0.10	733.78	-0.044	
JUN	551.05	137.51	-0.84	2150.31	-0.330	
JUL	530.37	149.22	-1.33	3055.22	-0.480	
AUG	528.69	128.42	-0.99	2402.21	-0.413	
SEP	522.70	127.51	-0.74	1926.11	-0.312	
OCT	520.01	123.40	-0.52	1502.54	-0.226	
NOV	531.49	124.77	-0.13	787.01	-0.058	
DEC	540.03	131.36	0.16	230.75	0.067	
ANNL	534.09	99.12	-0.19	891.92	-0.102	

Trends of Annual and Monthly Series (Programme TREND1)					
River:	WESER				
Total period:			1921-1984		
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	460.47	226.47	-0.86	2134.49	-0.070
FEB	485.44	250.38	-0.10	687.84	-0.008
MAR	461.09	206.96	0.73	-964.03	0.066
APR	407.36	168.96	1.71	-2939.29	0.189
MAY	284.77	110.70	1.33	-2321.74	0.225
JUN	236.13	109.13	1.76	-3203.82	0.301
JUL	218.55	131.99	1.42	-2561.49	0.201
AUG	191.94	82.70	0.69	-1163.91	0.156
SEP	182.52	81.73	0.15	-109.51	0.034
OCT	206.23	99.79	-0.09	390.53	-0.018
NOV	284.30	148.53	-1.92	4030.39	-0.241
DEC	380.97	221.38	1.03	-1622.85	0.086
ANNL	316.65	92.12	0.49	-636.95	0.099

Trends of Annual and Monthly Series (Programme TREND1)					
River:	WYE				
Total period:		1977-1989			
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	10.97	4.76	0.12	-232.59	0.106
FEB	8.23	3.79	-0.44	876.88	-0.468
MAR	9.94	4.97	-0.21	429.52	-0.174
APR	4.46	2.50	0.05	-100.18	0.086
MAY	2.68	2.73	-0.24	478.83	-0.358
JUN	2.29	2.10	0.03	-62.70	0.064
JUL	1.43	1.35	-0.02	31.71	-0.046
AUG	2.70	2.65	0.07	-127.26	0.101
SEP	4.33	2.34	0.01	-24.02	0.025
OCT	9.29	5.24	0.50	-979.09	0.386
NOV	11.17	5.11	-0.54	1083.99	-0.430
DEC	12.34	4.15	-0.06	127.93	-0.057
ANNL	6.65	0.63	-0.06	125.25	-0.386

Trends of Annual and Monthly Series (Programme TREND1)					
River:	YENISEI				
Total period:		1936-1994			
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	6005.69	1460.76	72.13	-135727.50	0.848
FEB	5926.68	1634.67	80.36	-151977.80	0.844
MAR	5928.42	2064.84	104.01	-198455.20	0.865
APR	5913.52	2303.05	112.75	-215637.80	0.841
MAY	27448.10	13258.87	-185.88	392699.91	-0.241
JUN	70339.52	22230.06	55.06	-37858.82	0.043
JUL	26518.68	4872.16	-89.36	202104.13	-0.315
AUG	17473.05	3417.76	-86.11	186681.48	-0.433
SEP	16830.36	2808.30	-69.23	152871.75	-0.423
OCT	13895.20	2454.00	-47.07	106390.55	-0.329
NOV	6743.07	1444.56	45.08	-81842.10	0.536
DEC	5739.56	1242.76	57.36	-106967.40	0.793
ANNL	17396.82	2390.38	4.09	9356.74	0.029

Trends of Annual and Monthly Series (Programme TREND1)					
River:	ZAMBEZE				
Total period:		1976-1979			
Time interval	Mean	StdDev	Slope	Intercept	R
JAN	3502.75	2276.01	77.50	-149753.50	0.066
FEB	2891.50	1841.36	110.80	-216215.50	0.116
MAR	4633.50	5189.31	993.40	-1959815.00	0.363
APR	4095.75	4192.41	332.50	-653423.00	0.153
MAY	3308.50	3122.15	475.00	-936004.00	0.291
JUN	4018.50	2749.46	200.40	-392272.50	0.141
JUL	4558.00	1676.06	161.80	-315401.50	0.186
AUG	1954.25	690.49	247.70	-487872.50	0.645
SEP	1991.00	1044.65	486.60	-960260.50	0.793
OCT	2293.00	1147.67	641.80	-1266866.00	0.895
NOV	2757.00	1907.99	719.40	-1419856.00	0.672
DEC	4041.50	828.89	-87.80	177666.00	-0.204
ANNL	no data	no data	no data	no data	no data

Reference of GRDC Reports

Report No. 1 (May 1993)	Second Workshop on the Global Runoff Data Centre, Koblenz, Germany, 15 - 17 June, 1992.			
Report No. 2 (May 1993)	Dokumentation bestehender Algorithmen zur Übertragung von Abflußwerten auf Gitternetze. (Incl. abtract in English by the GRDC: Documentation of existing algorithms for transformation of runoff data to grid cells) by G.C. Wollenweber.			
Report No. 3 (June 1993)	GRDC - Status Report 1992.			
Report No. 4 (June 1994)	GRDC - Status Report 1993.			
Report No. 5 (November 1994)	Hydrological Regimes of the Largest Rivers in the World - A Compilation of the GRDC Database.			
Report No. 6 (December 1994)	Report of the First Meeting of the GRDC Steering Committee, Koblenz, Germany, June 20 - 21, 1994.			
Report No. 7 (June 1995)	GRDC - Status Report 1994.			
Report No. 8 (July 1995)	First Interim Report on the Arctic River Database for the Arctic Climate System Study (ACSYS).			
Report No. 9 (August 1995)	Report of the Second Meeting of the GRDC Steering Committee, Koblenz, Germany, June 27 - 28.			
Report No. 10 (March 1996)	Freshwater Fluxes from Continents into the World Oceans based on Data of the Global Runoff Data Base.			
Report No. 11 (April 1996)	GRDC - Status Report 1995.			
Report No. 12 (June 1996)	Second Interim Report on the Arctic River Database for the Arctic Climate System Study (ACSYS).			
Report No. 13 (Februray 1997)	GRDC Status Report 1996			

•

Reference of GRDC Reports

.

•

Report No. 14 (February 1997)	The use of GRDC - information Review of data use 1993/1994. Status: January 1997			
Report No. 15 (June 1997)	Third Interim Report on the Arctic River Data Base (ARDB) for the Arctic Climate System Study (ACSYS): Plausibility Control and Data Corrections (Technical Report)			
Report No. 16 (August 1997)	The GRDC Database. Concept and Implementation.			
Report No. 17 (Sept. 1997)	Report on the Third Meeting of the GRDC Steering Committee, Koblenz, Germany June 25-27, 1997			
Report No. 18 (July 1998)	GRDC Status Report 1997			
Report No. 19 (July 1998)	Evaluation of Statistical Properties of Discharge Data of Stations Discharging Into the Oceans - Europe and Selected World-Wide Stations - (F. Portmann)			
Report No. 20 (July 1998)	Water Resources Development and the Availability of Discharge Data in WMO Region II (Asia) and V (South-West Pacific)			